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Abstract

When a student is weak in a skill, a key question is why: is it because the skill is hard to learn
(costs) or because it has low value to the family (benefits)? Parents have insight into which skills
hold value for their child, but large class sizes and informal communication limit teachers’ access
to this information. In this paper, I provide teachers with structured parent information through
a field experiment. I survey 3,404 parents across five private schools in India to measure parents’
perceptions of their children’s skill levels and preferences for improvement across academic and
socioemotional domains. Parents vary in their preferences over which skills to improve, but
on average prefer improving their children’s weaker skills. I develop a structural model of
skill development showing that this pattern indicates learning costs, rather than family values,
primarily drive observed specialization. I elicit teachers’ beliefs about parent preferences and
find little alignment with actual parent views, even at the classroom level. I randomize teacher
access to parent survey data via a web portal. Treatment shifts student specialization toward
parent-prioritized skills, with larger effects where baseline teacher beliefs were most inaccurate.
Structural estimation corroborates these patterns and enables policy counterfactuals quantifying
welfare gains from better cost-benefit alignment. The results demonstrate that structured parent
feedback enables teachers to target instruction toward what families value most.
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1 Introduction

Educational policy has long focused on increasing the rate of students’ skill growth, using outcomes

such as test scores or teacher value-added as benchmarks for success (Rivkin et al., 2005; Hanushek

and Woessmann, 2008; Glewwe and Muralidharan, 2016). Yet if students and families vary in what

skills they value most, then choosing which skills to promote—the direction of skill growth—may

be equally important for designing welfare-maximizing policy. For example, a student who aims

to be a business leader may prefer to improve their teamwork and leadership skills over math and

reading skills. This issue has grown in relevance as educational goals expand beyond foundational

academic skills to include socioemotional and other noncognitive skills (Heckman et al., 2006; Kosse

and Tincani, 2020; Deming and Silliman, 2025).

In this paper, I examine how teachers can better align the direction of student skill growth with

those skills students and families value most. Teachers must allocate limited time and resources

across many skills, and they often lack structured information about which skills benefit each

student. These benefits depend on hard-to-observe features such as students’ home environments,

peer groups, and future aspirations. Teachers who lack this information often rely on observable skill

levels to guide instruction, such as remedial education that targets weak skills, or gifted education

that builds on students’ strengths. This practice speaks to a long standing debate in education:

should educators promote well-rounded or specialized students (Rosen, 1983; Câmara Leme et al.,

2020; Mulhern et al., 2024; Kemper and Renold, 2024). Students’ skill levels alone cannot resolve

the quandary: teachers targeting weak skills may be focusing on low-value (hence neglected) skills,

or targeting high-value skills that are weak because they are hard to learn.

Parents often have insight teachers need regarding what skills are high value for their children.

However, information about students typically flows in the direction of schools to parents, both

in standard operations (e.g., report cards and parent-teacher meetings) and in interventions (e.g.,

parental engagement programs and messaging campaigns)1. This directional flow of information

may leave teachers without structured information about what skills benefit each student, and may

thus limit their ability to align instruction with student needs.

I address this challenge by increasing the flow of information from parents to teachers. I survey

3,404 parents and 242 teachers across five private schools in India (grades 1-10) to gather structured

information on the skill-based needs of students. Parents assess their children’s current skill levels

on a scale of 0-100 across nine academic, emotional, and social domains. To capture specialization, I

standardize skill levels within-student so that positive values indicate strengths and negative values

indicate weaknesses. Parents then report skill preferences by ranking skills from most to least

important to improve. I then elicit teachers’ beliefs about the skill preferences of parents. I show

that teachers’ beliefs are largely uncorrelated with actual parent views, even at the classroom level.

Motivated by this misalignment, I randomize whether teachers receive access to their classroom’s

parent survey data (i.e., parent-reported skill levels and skill preferences) through a custom-built

1See Hastings and Weinstein (2008); Andrabi et al. (2017); Bergman (2021); Bergman and Chan (2021); Berlinski
et al. (2022) for examples of information interventions targeting parents.
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web portal.

To understand why this information matters, I develop a model that centers parents and teachers

as key decision-makers. Parents maximize their children’s utility by choosing inputs to produce

multiple skills: they balance the ease with which their children build each skill (costs) with the

value of having that skill (benefits). Teachers, with aligned incentives, shift the effective costs of

learning in the classroom, thereby changing the production function faced by parents. However,

teachers must infer parents’ preferences from noisy signals. Time and effort may be shifted away

from the highest-value margins when teachers misperceive what parents value, as I document in

my context.

The model yields a simple insight: whether parents prefer improving weak or strong skills helps

diagnose why students specialize. This stems from a familiar economic principle—marginal benefits

equal marginal costs for each skill, when optimizing across skills. Consider first the case of pure

cost-driven specialization, in which skills only vary with regard to how difficult they are to learn.

Students thus specialize in skills that are easier to build. Because marginal benefits decrease, these

easy-to-learn strengths offer little remaining value to improve further, and thus parents prefer to

improve weaker skills. Conversely, if skills only vary with regard to how they are valued, students

specialize in high-value skills; these skills incur increasing marginal costs and are thus more costly to

further improve. Because marginal benefits must equal these high marginal costs, parents continue

to prefer improvement in strong skills.

I use the data from the parent survey to examine if skill specialization is primarily cost- or

benefit-driven in this setting. I regress skill preferences on skill levels to capture if parents prefer

improving weak or strong skills. The slope, hereafter the preference-level slope, is negative when

parents prefer improving weaker skills, and positive when they prefer improving stronger skills.

Across students and within-skill, I find a strong negative preference-level slope for all nine skills.

For a given skill, parents that perceive low skill levels for their children consistently rank that skill

as more important to improve relative to other parents. Students in higher grades largely drive this

pattern: skill levels and skill preferences are nearly uncorrelated for primary grades and become

increasingly negatively correlated by grade 10. Through the lens of the model, this implies costs

(i.e., how easy or hard it is for children to learn skills) become increasingly important relative to

benefits in determining specialization patterns as students age. This is consistent with dynamic

complementarity in skill formation (Cunha and Heckman, 2007), where early gaps in skill levels

lead to widening differences in the costs of acquiring new skills over time.

Within each student, I find parents predominantly want improvement in their children’s weaker

skills, but this varies widely: many parents prefer for their children to improve strengths. In

fact, when the preference-level slope is more positive, parents report greater satisfaction with their

children’s progress in school. In the model, more positive alignment between marginal benefits

and skill levels represents a case in which a student’s natural path of skill growth becomes more

aligned with the direction that would raise utility fastest. This suggests that when parents see the

direction of their child’s skill growth as aligned with what they value, they are more satisfied with

their child’s progress. Supporting this interpretation, the preference-level slope is uncorrelated with
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parent satisfaction with school quality, suggesting that it reflects satisfaction with dynamic growth,

rather than static features of the school environment.

Turning to teachers, I ask them to rank the same nine skills for a typical student, and then

for specific randomly sampled students in their class. Crucially, for the specific students, I also

elicit teachers’ beliefs about each parent’s skill preferences. I find that teacher beliefs are largely

uncorrelated with parents’ actual preferences, both at the individual-student level and in classroom

averages, and instead reflect teachers’ own priorities—–consistent with teachers projecting their

own preferences onto parents. This misalignment demonstrates potential misallocation of teacher

effort across skills and students.

Motivated by these findings, I design and implement a randomized experiment that provides

teachers with access to parents’ skill levels and skill preferences. Randomization occurs at the

teacher level; treated teachers receive individual login credentials to a custom-built website dis-

playing information for students in their homeroom section.2 In the context of my model, this

intervention acts as a production-side shock, leading teachers to lower the effective cost of im-

proving parent-prioritized skills. The model yields three testable predictions: for students whose

teachers were initially misaligned, treatment should (i) increase specialization in parents’ most pre-

ferred skill (i.e., empirically, raise skill levels), (ii) reduce the marginal benefit for that skill (i.e.,

lower the skill preference rank), and (iii) increase the within-student alignment between marginal

benefits and skill levels (i.e., result in a more positive preference-level slope).

I find that providing parent preference information to teachers shifts their beliefs toward the true

classroom average. Treated teachers’ average beliefs (across parents in their class) become more

correlated with actual parent rankings, with suggestive evidence of roughly 10 percentage point

improvements in accuracy in identifying which skill category (academic, social, emotional) is most

or least valued on average, in their classroom. In particular, they learn where academics sits in the

order of valued skills. However, teachers do not become better at predicting which specific parents

hold these preferences. This pattern aligns with the model’s policy logic: since teacher effort is

applied at the classroom level, the ability to correctly identify classroom-average preferences can

increase the rate of welfare growth, even if teachers do not perfectly know individual values.

The experiment produces results consistent with the model predictions. First, giving teachers

data concerning parents’ assessment of their children’s skill levels and skill preferences changed

how students specialized. Average effects on skill levels are near zero, but this masks substan-

tial heterogeneity by baseline teacher accuracy. When teachers initially held inaccurate beliefs

about a parent’s priorities, treatment increased skill levels in parents’ most-preferred skills and

decreased skill levels in their least-preferred skills. Conversely, when teachers were initially accu-

rate, treatment reduced skill levels in parents’ most-preferred skills and increased skill levels in

their least-preferred skills. This result is consistent with teachers applying effort at the classroom

level, reallocating effort away from students they already understood and toward students they

2In this setting, teachers are assigned one section of students during the 0-period (homeroom), where they are
responsible for student guidance and are the point of contact for parents (e.g., they meet parents during parent-teacher
meetings). Teachers then rotate into other classrooms throughout the day to teach specific subjects.
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previously misjudged. Second, parents’ initial top priorities become less urgent to improve: for the

skill parents most wanted to improve at baseline, treated parents’ endline skill preference falls by

0.26 ranks compared to control, implying that the marginal benefit declined. Third, treated stu-

dents’ skill levels become more aligned with parents’ skill preferences: compared to the control, the

preference-level slope increases by about 0.15 on average (from a base slope of -0.7) and by 0.26 in

classrooms where parents most preferred improving academic skills. All three effects are strongest

in treated classrooms where parents on average preferred improving academic skills; this result is

consistent with teachers having more scope to shift efforts in the academic domain. Taken together,

these findings show that providing teachers with structured information can act a production shock:

in other words, teachers’ classwide efforts are reoriented toward parents’ most-preferred skills. Par-

ents’ perceived need for improvement in those areas is reduced, and specialization is shifted away

from what is easiest to build and toward what parents value most.

To translate the framework into policy terms, I estimate the structural model using Bayesian

methods. This lets me recover the underlying costs and benefit parameters that generate observed

specialization, and then simulate counterfactuals. I replicate a key result by estimating ratio of

cost variance to benefit variance, which measures the relative importance of production constraints

versus preference heterogeneity in driving specialization. I find that production constraints vary

approximately 21% more across families than do preferences for academic versus socioemotional

skills. I then simulate the policy counterfactual of perfectly aligning production costs with parental

preferences. This exercise shows welfare gains are modest on average, at around one percent,

suggesting most families are not far from their optimal skill mix given the production constraints

they face.

The key contribution of the framework is diagnostic. Observing whether parents prefer im-

proving weak or strong skills helps identify if barriers to learning or perceived benefits drive spe-

cialization. A teacher can use the diagnostic: for example, if parents of struggling math students

consistently report preferring improvement in math, the diagnostic indicates that high barriers to

learning math, not low perceived value, are driving math weakness for these students. In this

setting, I find that uneven learning costs primarily driving specialization. This is consistent with

interventions in primary and secondary education that tend to target production-side barriers:

teacher training, additional school resources, and intensive instructional models that help students

overcome learning difficulties (Jackson et al., 2016; Muralidharan and Sundararaman, 2013; Burgess

et al., 2023; Fryer Jr, 2017). In contrast, in contexts where perceived returns to skills likely drives

specialization, such as in higher education, or in the labor market, interventions often accordingly

target the benefit side: providing students information about earnings across majors and occu-

pations, role models demonstrating career opportunities in different fields, and career guidance

counselors helping students to understand returns to specialization (Jensen, 2010; Wiswall and

Zafar, 2015; Porter and Serra, 2020; Hoxby and Turner, 2015; Conlon, 2021).

Beyond identifying the source of specialization, this framework suggests how teachers can per-

sonalize education by providing instruction based on student-varying costs and benefits to skills.

This represents a theory-guided complement to “Teaching at the Right Level”(Banerjee et al.,
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2017): personalize not only by skill levels, but also by values. This is particularly relevant for

educational aims that go beyond foundational skill development, where level-based grouping may

be sufficient if all parents similarly value basic literacy and numeracy. However, broadening edu-

cational goals to diversify or specialize skill development requires accounting for large variation in

preferences over these skills. In these contexts, providing teachers with structured information on

parent preferences may help align instructional effort with welfare-maximizing aims.

Contributions to the Literature This benefits-vs-costs question is central but empirically

underidentified in most educational settings, despite related evidence on the technology of skill

formation and dynamic complementarity (Cunha and Heckman, 2007; Cunha et al., 2010), on the

heterogeneous returns to cognitive and socioemotional skills (Heckman et al., 2006; Lindqvist and

Vestman, 2011; Deming, 2017; Kosse and Tincani, 2020; Deming and Silliman, 2025), on parental

preferences over teacher attributes (Jacob and Lefgren, 2007; Jackson, 2018), and on resource and

productivity constraints in schools (Jackson et al., 2016; Muralidharan and Sundararaman, 2011,

2013; Burgess et al., 2023; Fryer Jr, 2017). The work of Cotton et al. (2025) is closely related to my

study: the authors estimate a structural model of student learning to distinguish motivation from

productivity as drivers of student study time. They find that low productivity, rather than low

motivation, predicts academic struggles3. My study complements this work by distinguishing costs

from benefits as drivers of skill specialization across multiple dimensions, and by examining the

supply side (i.e., teacher allocation) rather than the demand side (i.e., student effort). It also relates

to literature on parental preferences and beliefs (Jacob and Lefgren, 2007; Dizon-Ross, 2019) and on

information interventions that primarily inform parents (Hastings and Weinstein, 2008; Bergman,

2021; Bergman and Chan, 2021; Berlinski et al., 2022).

I contribute to the literature along five margins. First, I provide new measurements for the

literature on parental preferences and beliefs by directly eliciting, for the same child, her parents’

perceived skill levels and skill preferences for improvement across nine cognitive and socioemotional

dimensions (Jacob and Lefgren, 2007; Dizon-Ross, 2019). I go beyond documenting preferences by

linking skill levels to marginal benefits to provide a diagnostic for the underlying source of special-

ization. Second, I contribute to the literature on the technology of skill formation by providing a

tractable framework to distinguish benefit- from cost-driven heterogeneity, and by modeling teachers

as endogenous cost-shifters who respond to information (Cunha et al., 2010). Third, I structurally

estimate the model using Bayesian methods, leveraging teacher skill rankings as supply-side cost

shifters to recover primitives governing skill formation. The estimated model enables policy coun-

terfactuals that compare alternative approaches to personalizing instruction. Fourth, my framework

informs work on the heterogenous benefits to cognitive and non-cognitive skills by offering a way

to interpret observed specialization and thus assists understanding of when heterogeneous benefits

are likely to be the more important driver of investment choices (Heckman et al., 2006; Lindqvist

3While Cotton et al. (2025) focus on why students do not complete homework (i.e., they examine motivation vs.
productivity in converting time to learning), I examine why students specialize across skills (i.e., I examine costs vs.
benefits driving comparative advantage). Their framework clarifies intensive margin decisions for a single skill; my
framework clarifies extensive margin allocation across multiple skills.
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and Vestman, 2011; Deming, 2017; Kosse and Tincani, 2020; Deming and Silliman, 2025).

Fifth, I contribute to the literature on information interventions that primarily inform parents

about their child’s behavior (Hastings and Weinstein, 2008; Bergman, 2021; Bergman and Chan,

2021; Berlinski et al., 2022). My experiment, however, reverses the typical information flow. I

inform teachers about parent priorities that serve as a proxy for students’ marginal benefits to skill

development, a parameter where parents are plausibly better informed, in contrast to academic

levels where evidence shows parental perceptions can be inaccurate. Despite my limited statistical

power, my experimental results provide validation that the structural model’s mechanisms operate

in practice. This demonstrates that reducing uncertainty on the school side can be a powerful lever

for change.

The paper proceeds as follows. Section 2 describes the Indian school context, including the

process for recruitment and list of human capital dimensions. Section 3 presents the model of

multidimensional skill formation distinguishing benefit- from cost-driven specialization and models

teachers as key inputs to skill production. Section 4 describes the data from the parent survey

and reports initial descriptives. Section 5 presents results on benefit- vs cost-driven specialization.

Section 6 describes the teacher-facing information experiment and its implementation. Section 7

discusses the impact of information on teacher beliefs about parent priorities, and Section 8 reports

impacts on key student outcomes. Section 9 structurally estimates the model and presents policy

counterfactuals. Section 10 concludes.

2 Setting

2.1 Context

This study takes place in five private schools located across four states in India: Delhi (two schools),

Gujarat, Punjab, and West Bengal. These schools serve middle- to upper-middle-class families;

approximately 90% of students come from families with household incomes above the national

median. All schools span from nursery to 12th grade. For this study, I focus on students in grades

1-10.

Tuition fees at these schools range from approximately $350 per year at the least expensive

school to $2,500 per year at the most expensive school: this range of tuition fees across the schools

resembles the range of costs across the bulk of low- to middle-income private schools in the Indian

context. This setting is not an outlier: it is in fact quite representative of a large and growing

segment of education in India and in other developing countries. Private schools have become

increasingly prevalent across low-income countries with enrollment shares rising from 11 to 22

percent between 1990 and 2010 (Baum et al., 2014); in India specifically, enrollment shares rose to

39% in 2024 (UDISE+, 2024-25), representing about 100 million students.

Class sizes in these schools typically range from 30 to 40 students per classroom. This creates

significant challenges for teachers with regard to providing individualized attention to students.

Teachers often have to balance the wide variation in parental values and expectations for their
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children as parents pay fees; in some cases, teacher compensation is explicitly tied to parental

feedback. Across all five schools, parent-teacher meetings occur either twice a year (i.e., once per

term), or every month. These meetings provide opportunities for teachers to share information

about student progress with parents, and also for parents to share their perceptions with teachers.

However, the format and content of these interactions vary widely. Most of the schools in this study

provide report cards that focus primarily on academic subjects, but at least one school includes

noncognitive skills on the report card.

Despite the regular occurrence of parent-teacher meetings, teachers face numerous informa-

tion frictions that limit their ability to incorporate parent preferences into their decision-making.

These frictions include large class sizes, varying parental communication styles, and the difficulty

of aggregating information from multiple parents. This context where parent input is valued, but

potentially undersupplied due to structural constraints, provides an ideal setting in which to ex-

amine how structured information about parent preferences can influence teacher decision-making

and student outcomes.

2.2 Sample and Recruitment

The recruitment process involved a self-directed search for schools interested in participating in a

research study focused on understanding the varied needs of their students and accommodating

parent perspectives through structured information aggregation. I conducted recruitment through-

out 2023 and 2024 and presented the project as an opportunity for schools to better understand

parent preferences and perceptions and to better align teaching practices with school aims. The

recruitment process led to partnerships with five private schools across four states in India.

The study began with a pilot phase in October 2023 at the initial partner school in West

Bengal. Following a successful implementation of the pilot, I conducted a full baseline survey at

this school in March 2024. I launched the intervention by sharing information with treated teachers

in July 2024. Concurrent with the implementation at the first school, I recruited additional schools

throughout the summer of 2024. I successfully onboarded four more schools and conducted baseline

surveys at these institutions in September and October 2024. Treated teachers at these schools

received access to the website containing parent preference information in November 2024; this

moment marked the beginning of the intervention phase for these schools.

Figure 1: Study Timeline

October 2023

Pilot at first

partner school

March 2024

Baseline survey

at first school

July 2024

Intervention begins

at first school

Sep-Oct 2024

Baseline surveys at

four additional schools

November 2024

Intervention begins

at additional schools

May 2025

Endline surveys

April 2024: Start of 24/25 school year April 2025: Start of 25/26 school year

Figure: Study Timeline

Tushar Kundu (CU) Columbia University, Spring 2025 February 13th, 2025 1 / 1

Due to prior commitments, two schools were unable to continue their participation after the
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baseline phase. Although I collect and analyze endline data for all three remaining schools, I follow

the preanalysis plan with regard to only estimating treatment effects using endline data for schools

in which treatment compliance was above 15% (measured as the percent of treated teachers who

view the website with parent data at least once). This threshold was set ex ante to ensure that

analysis was restricted to contexts where teachers sufficiently engaged with the intervention to

potentially affect student outcomes. Despite regular reminders and school visits, this threshold was

only surpassed by teachers in the initial partner school. As a result, the baseline sample includes

3404 parents surveyed in 242 classrooms across the five schools, and the final experimental sample

includes 849 students across 106 classrooms in the initial partner school.

The reduction from baseline to endline within the partner school reflects the voluntary nature of

survey completion rather than systematic attrition. Both baseline and endline surveys were admin-

istered during parent-teacher meetings, with participation incentivized only by informing parents

that their responses would help teachers better target instruction for their child. Approximately

one-quarter of the school’s roughly 4,000 parents completed surveys at each wave, with substantial

turnover in which families participated. To verify that this pattern does not threaten internal

validity, I regress an indicator for having complete data (non-missing values for all baseline and

endline outcomes) on treatment assignment and baseline covariates. Appendix Table B.1 shows no

significant relationship between treatment status and survey completion, nor do treatment effects

on completion vary by parents’ baseline skill preferences. This null result indicates that sample

composition is balanced across treatment and control classrooms. Full descriptive statistics for the

baseline and experimental samples are provided in Appendix Table B.2.

2.3 Skill Dimensions

The study focuses on nine dimensions of human capital that encompass both cognitive and noncog-

nitive skills. The skills are divided into three broad categories: academic, social, and emotional

skills. The nine skill dimensions are shown below in Table 1.

I developed the set of skills through an iterative process. The initial list of skills contained 21

potential skill dimensions designed to be comprehensive in covering any skill a parent may care

about. Skill dimensions were drawn from literature on educational frameworks, psychology, and

through discussion with parents prior to the start of the study. Through pilot testing with parents

and teachers, I narrowed the list down to nine dimensions in order to balance the time constraints

of administering the survey with the comprehensiveness of the final list. The selection process

prioritized dimensions that (1) were comprehensible to parents without specialized knowledge, (2)

covered a range of both cognitive and noncognitive domains, and (3) were potentially actionable

by both teachers and parents. Parents were provided the exact image shown in Table 1 to promote

consistency in parents’ understanding of the dimensions. For each dimension, parents were asked

to rate their child’s current standing on a scale from 0 to 100 (skill levels), and then to rank the

nine dimensions in order of importance for improvement (skill preferences); I describe this further

in Section 4.
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Table 1: List of Skill Dimensions

Category Aspect Explanation

Academic Literacy skills Reading, writing, speaking, and 
listening

Academic Mathematical skills Numeracy, quantitative reasoning, 
problem solving

Academic Scientific literacy Understanding scientific concepts and 
processes

Social Collaboration and teamwork 
skills

Ability to work effectively with others 
and contribute to group goals

Social Interpersonal skills
Effective communication, conflict 
resolution, recognizing and 
responding to social cues

Social Leadership and initiative Taking charge, setting goals, 
motivating others

Emotional Perseverance and growth 
mindset

Resilient in the face of challenges, 
belief in self improvement

Emotional Emotional self-awareness and 
regulation

Recognizing and managing emotions, 
thoughts, and behaviors  

Emotional Empathy for others Understanding and valuing 
perspectives of others

Notes: Parents and teachers are asked to evaluate nine human capital dimensions for their students. Dimensions
were chosen to cover a range of cognitive and non-cognitive skills. The displayed table was shown to both parents
and teachers in their respective surveys to promote consistency in understanding each dimension.

3 Model

The model of multidimensional skill production proceeds in two steps. First, I introduce parents

whose objective is to maximize their child’s utility. Parents have beliefs about the costs and benefits

to skills for their child. These beliefs contain useful signal about their child’s true parameters. Based

on these beliefs, parents allocate a fixed budget towards purchasing inputs for skill development,

leading to students’ observed specialization patterns. I interpret the expansion path (i.e., the path

of optimal bundles as the budget increases) as how skills would change over time, absent changes to

parents’ perceived costs or benefits from skills. This interpretation yields two types of students: (A)

students who would derive higher utility from more well-rounded profiles relative to the expansion

path, and (B) students who would derive higher utility from more specialized profiles relative to

the expansion path.

Second, I introduce teachers with aligned incentives; they also aim to maximize student welfare.

Teachers do not choose inputs, but instead allocate effort towards reducing the costs of building

skills at the classroom-level. Thus, they change the production function faced by parents in their

class. Teachers hold their own noisy beliefs about the costs and benefits to skills. Beliefs depend

on their own priorities, and on noisy signals of parents’ preferences. When teachers misperceive

parents’ preferences, they may misallocate effort, motivating the information experiment.
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3.1 Parents’ Problem

Skills. Parents derive utility from their child’s skill bundle c = (c1, c2) ∈ R2
+, where c1 and c2

denote two distinct skill domains (e.g., cognitive and noncognitive). We focus on two skills for

simplicity, but the model extends naturally to three or more skills. We define the child’s level of

specialization (in skill 1, without loss of generality) as the ratio of the skill levels, si := c1i/c2i.

Preferences. Parent i has Cobb-Douglas utility4

U(c1i, c2i;βi) = cβi
1i c

1−βi
2i , 0 < βi < 1.

The marginal rate of substitution (MRS) between skills 1 and 2 is

MRS12,i =
βi

1− βi
· c2i
c1i

=
βi

1− βi
· 1
si
. (1)

Budget and technology. Parents buy inputs (x1i, x2i) at prices (p1i, p2i) subject to p1ix1i +

p2ix2i ≤ Ii. Each skill is produced via single-input technologies with diminishing marginal products:

c1i = a1ix
θ
1i, c2i = a2ix

θ
2i, aji > 0, 0 < θ < 1.

Eliminating (x1, x2) yields a smooth, strictly concave frontier in (c1, c2) space:

p1i

(
c1i
a1i

)1/θ

+ p2i

(
c2i
a2i

)1/θ

= Ii.

Feasible set. Let ρ := 1/θ > 1 and define

κ1i := a1i

(
Ii
p1i

)1/ρ

, κ2i := a2i

(
Ii
p2i

)1/ρ

.

The frontier becomes the constant-elasticity-of-transformation (CET) form5:(
c1i
κ1i

)ρ

+

(
c2i
κ2i

)ρ

= 1, ρ > 1. (2)

Beliefs and the parent’s problem. In reality, there exists a true state (βi, κ1i, κ2i) that deter-

mine the benefits and costs of skill production for child i. Parent i observes noisy signals of this

4I use Cobb-Douglas preferences for transparency and tractability. All qualitative results (diagnostic, comparative
statics) continue to hold under smooth, strictly increasing, and strictly quasiconcave preferences. The closed-form
expressions are specific to Cobb-Douglas.

5The CET frontier allows for non-unit elasticity of transformation between skills. Multi-output production func-
tions with constant elasticity of transformation are widely used; this single-period CET mirrors the multistage pro-
duction functions in Cunha and Heckman (2007, 2008); Cunha et al. (2010). I abstract from dynamic self-productivity
and cross-period complementarity to focus on the question of whether observed heterogeneity is driven by relative
costs (κ1i, κ2i) or by relative benefits (βi).
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truth based on their interactions with and observations of their child. For tractability, we assume

parents optimize as if their beliefs are correct. Thus, the problem below proceeds treating the

parent’s perceived parameters (βi, κ1i, κ2i) as given, with the understanding that these represent

parental beliefs about their child rather than necessarily the true values.

Marginal rate of transformation. Implicit differentiation of (2) yields the marginal rate of

transformation (MRT) between skills:

MRT12 =

(
κ2i
κ1i

)ρ(c1i
c2i

)ρ−1

. (3)

Note that κji fully captures the effective cost of producing skill j for parent i, and is exactly

the intercept of the frontier on the cj axis.

Equilibrium skill ratio. Utility maximization subject to (2) equates (1) and (3), giving the

optimal skill ratio:

s∗i :=
c∗1i
c∗2i

=

(
βi

1− βi

)1/ρ

︸ ︷︷ ︸
Ti

κ1i
κ2i︸︷︷︸
λi

. (4)

This equilibrium condition is shown graphically in Figure 2A. The equation illustrates how the

variation in skill ratios across parents can be decomposed into two components: variation in the

benefits tilt Ti =
(

βi

1−βi

)1/ρ
, which reflects how much more a parent values skill 1 relative to skill 2,

and variation in the costs tilt λi =
κ1i
κ2i

, which reflects the relative costs or ease of producing skill 1

compared to skill 2.

Comparative statics. Consider the following elasticities of the optimal skill ratio with respect

to the primitives:

∂ ln s∗i
∂βi

=
1

ρ

(
1

βi
+

1

1− βi

)
> 0,

∂ ln s∗i
∂ lnκ1i

= 1,
∂ ln s∗i
∂ lnκ2i

= −1.

Thus, an increase in the relative benefit to skill 1 (βi ↑), or a decrease in the relative cost of

producing skill 1 (κ1i ↑ or κ2i ↓) raises the optimal specialization s∗i .

Skill growth over time. In this model, parents’ budgets consists of time, money, and other

resources that they can invest in their child’s skill development. Consider additional time (e.g., one

more year) to spend on skill development. We model this as a pure budget expansion: in each period

the family has more effective resources Ii. With homothetic preferences and the CET frontier, if

benefits (βi) and costs (κ1i, κ2i) are fixed, optimal levels scale up with income, but proportionally

so that specialization, s∗i = c∗1i/c
∗
2i = Tiλi, remains constant. This is shown graphically in Figure

2B. The expansion path will allow us to distinguish two types of students, and will be key to

understanding how teachers can influence skill growth over time.

11



Figure 2: Parents’ Problem and Skill Growth
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(A) Parents’ static problem
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(B) Expansion path over time

Two types: (A) Desire well-roundedness or (B) Desire specialization. Fix student i at

ci = (c1i, c2i) with specialization level si = c1i/c2i and

MRS12,i =
βi

1− βi
· 1
si
.

With βi and (κ1i, κ2i) fixed, income growth moves the optimum with constant slope (dc2/dc1)I =

1/si. Contrast this with the direction of maximal utility growth, which is normal to the indifference

curve (or equivalently normal to the frontier), hereafter denoted as the IC-normal direction. The

IC-normal has slope 1/MRS12,i, and is denoted in red in Figure 2A.

Without loss of generality, fix the weaker skill level to be on the horizontal axis so that si < 1/2.

We define:

• Type A: expansion path is steeper than the IC normal,

1

si
>

1

MRS12,i
⇐⇒ MRS12,i > si,

in other words, marginal utility puts more weight on the weaker skill 1 relative to the current

level of specialization.

• Type B: expansion path is more shallow than the IC normal,

1

si
<

1

MRS12,i
⇐⇒ MRS12,i < si,

i.e., marginal utility favors further improvement in the stronger skill relative to the current

12



level of specialization.

Recall that MRS12,i = βi/(1−βi)∗s−1. Therefore, considering the in-between case where MRS12,i =

si allows us to define the threshold ratio s†(βi) :=
√
βi/(1− βi). A student is of type A if and only

if si < s†(βi) and of type B if and only if si > s†(βi). Intuitively, if the student is relatively weak

in skill 1 (si small) but the parent places high value on skill 1 (βi large), then the student is type

A and would benefit from further well-roundedness. Conversely, if a student’s relative weakness is

not too weak relative to values (1/2 > si > s†(βi)), then the student is type B and would benefit

from further specialization. We show Type A and B graphically in Figure 3.

Figure 3: Students that benefit from (A) well-roundedness or (B) specialization

(A) Type A: Desire well-roundedness (B) Type B: Desire specialization

Note that type A and B can be applied to either students or skills. For a given student, type A

(B) students derive more utility from improving weaker (stronger) skills. For a given skill, type A

(B) skills are ones in which the largest utility gains would come from boosting the weaker (stronger)

students in that skill.

Diagnostic for type A or B skills. I showed above that type A is characterized by environments

in which higher marginal benefits are associated with relative weaknesses (i.e., low skill levels), and

type B by environments in which higher marginal benefits are associated with relative strengths

(i.e., high skill levels). Hence, I propose the preference-level slope as a sufficient statistic for

capturing this relationship between marginal benefits and relative levels. Consider the regression

across students for a given skill (here, skill 1):

MRS∗12,i = α+ βRF s∗i + εi, (5)
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with population slope

βRF =
Covi(s

∗,MRS∗)

Vari(s∗)
. (6)

Using the primitives from Section 3.1, optimal specialization is the product of the benefit and cost

tilts so that

s∗i = Ti λi, MRS∗12,i = T ρ−1
i λ−1

i ,

so

s∗i ·MRS∗12,i = T ρ
i , (7)

which cancels λi and separates benefits (Ti) from costs (λi). It follows that

Cov(s∗,MRS∗) = Cov(Tiλi, T
ρ−1
i λ−1

i ) = E[T ρ
i ]− E[Tiλi] E[T ρ−1

i λ−1
i ]. (8)

Writing mean-zero deviations T̃i := Ti − E[T ] and λ̃i := λi − E[λ], a first-order expansion around

means yields

βRF =
(ρ− 1)Var(T̃ ) − Var(λ̃)

Var(T̃ ) + Var(λ̃)
. (9)

so that the sign and magnitude of the slope depends on the relative sizes of the variance in

benefit and cost tilts. As dispersion in costs increases, the slope becomes more negative (Type A),

and as dispersion in benefits increases, the slope becomes more positive (Type B).

This derivation shows that asking whether a student or skill is closer to Type A or Type B

is closely related to asking if relative strengths and weaknesses are primarily driven by dispersion

in costs or benefits. Intuitively, Type A students that desire more well-rounded profiles exist in

environments where weakness is due to high costs of production, not a low value for that skill.

Type B students that desire more specialized profiles exist in an environment where the strengths

are primarily due to high value for that skill, not ease of production.

Extreme cases and interpretation. Two polar cases benchmark (9):

(i) No cost variation (Var(λ̃) = 0): βRF = ρ − 1 > 0 when heterogeneity is purely benefit-

driven.

(ii) No benefit variation (Var(T̃ ) = 0): βRF = −1 when heterogeneity is purely cost-driven.

In intermediate cases βRF ∈ [−1, ρ − 1], and its sign/magnitude reveal the relative importance of

benefit versus cost dispersion. I display these benchmarks graphically in Figure 4.

Diagnostic for Type A or B students. Similar to the within skill diagnostic, we can classify

type A students as those that have high marginal benefits for improving weaker skills, and type B

students as those that have high marginal benefits for improving stronger skills.

First we solve for the equilibrium skill mix for a given student, with more than two skills.

Dropping the i subscript, let there be J ≥ 3 skills with
∑

j(cj/κj)
ρ = 1 and preferences

∏
j c

βj

j .
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Figure 4: Preference-level Slope Benchmarks
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(A) No benefit dispersion: βRF < 0
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(B) No cost dispersion: βRF > 0

Fix skill 1 as an anchor and therefore for j ̸= 1:

s∗j =
c∗j
c∗1

=

(
βj
β1

)1/ρ κj
κ1

=: Tjλj , MRS∗j1 = T ρ−1
j λ−1

j ,

where Tj = (βj/β1)
1/ρ and λj = κj/κ1 (full derivation in Appendix D). We consider the

analogous regression across skills for a given student of the marginal rate of substitution on

skill levels. A first-order expansion around means E [Tj ] and E [λj ] yields a similar expression for

the preference-level slope across skills for a given student:

βRF
j :=

Covj(s
∗,MRS∗)

Varj(s∗)
=

(ρ− 1)Varj(T̃ )−Varj(λ̃)

Varj(T̃ ) + Varj(λ̃)
.

Thus, the same logic applies: if the variation in costs dominates, the student is type A, the

slope is negative, and they would benefit from more well-roundedness; if the variation in benefits

dominates, the student is type B, the slope is positive, and she would benefit from more special-

ization.

3.2 Teachers’ Problem (Classroom-Level Targeting)

A teacher enters after parents have made their initial investment decisions. Each student arrives

with an achievement bundle c0 = (c1,0, c2,0) reflecting prior investments. The teacher cannot change

parents’ benefit parameters βi and does not choose inputs x directly; instead, she allocates effort

to lower effective costs of skill production by shifting the cost parameters κ = (κ1, κ2), with the

aim of maximizing students’ utility.

Teacher’s objective and information structure. The teacher’s goal is to maximize student

welfare, but she faces uncertainty about each student’s true parameters. Specifically, there exists

a true state (βi, κ1i, κ2i) for each child i that determines the actual benefits and costs of skill

production. Both teachers and parents observe noisy signals of this truth based on their distinct

interactions with and information about the child.
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Teachers form prior beliefs β̂T
i about each student’s benefit parameters from their own observa-

tions, general teaching experience, and baseline interactions with the child. These beliefs may be

more or less accurate than the true βi. Similarly, parents form beliefs β̂P
i from their own signals

and choose investments accordingly, as described in Section 3.1.

Crucially, teachers do not directly observe either the true parameters βi or parents’ beliefs

β̂P
i . In typical classroom settings, teachers form impressions of parent priorities through informal

communication and observation of student behavior. The information treatment in this study

provides teachers with clearer signals: specifically, teachers receive parents’ stated preferences about

the relative importance of different skills for their child, which I interpret as providing information

about β̂P
i .

Belief updating. Upon receiving information about parent beliefs β̂P
i , teachers update their

beliefs about student i’s benefit parameters in a Bayesian manner. The posterior belief is a precision-

weighted average:

β̂∗
i =

(ΣT
i )

−1β̂T
i + (ΣP

i )
−1β̂P

i

(ΣT
i )

−1 + (ΣP
i )

−1

where ΣT
i represents the variance of the teacher’s prior belief for student i, and ΣP

i represents

the teacher’s belief about the precision of the parent signal. For example, for continuing students

whom teachers know well, ΣT
i may be small (high precision priors), so teachers update less. For

new students, ΣT
i may be large (low precision priors), making teachers more responsive to parent

information.

Updating beliefs about βi implicitly updates beliefs about cost parameters κ1i, κ2i. When

teachers observe a student’s current skill levels (c1i, c2i) and learn new information about parent

preferences β̂∗
i , they must reconcile these facts through the equilibrium condition. For example,

consider a teacher who observes a student struggling in math. Initially, the teacher might attribute

this to low parental value for math (β̂T
i small). But upon learning that the family actually prioritizes

math highly (β̂P
i large), the teacher revises her beliefs: the struggle must instead reflect high costs

or barriers to learning math, perhaps due to limited access to tutoring, books, or a quiet study

space at home. Thus, while the information treatment directly provides signals about preferences,

it indirectly affects teachers’ beliefs about the full state (β̂∗
i , κ̂

∗
1i, κ̂

∗
2i).

Classroom-level technology choice. I model teachers as choosing a single classroom envi-

ronment that shifts the frontier for all students in the class. Let z := (κ1, κ2) summarize the

classroom-level technology (i.e., intercepts of the CET frontier). Starting from z0, the teacher

selects a class-wide change ∆z := z − z0 subject to a convex resource cost

C(∆z) ≤ B, C(0) = 0, ∇2C(z) ≻ 0.

Representative (target) student. Following the spirit of tracking/targeting models (e.g., Duflo

et al. (2011)), we assume the teacher orients instruction toward a fixed percentile τ ∈ (0, 1) of the
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baseline distribution.6 Let i(τ) denote the student at percentile τ in the baseline specialization

distribution (or, under symmetry, the median equals the mean). The teacher operates on beliefs

β̂∗
i(τ) about the representative student’s benefit parameters. The teacher’s objective is to improve

the representative student i(τ):

max
∆z

U
(
c∗(z0 +∆z; Ii(τ), β̂

∗
i(τ)) ; β̂

∗
i(τ)

)
s.t. C(∆z) ≤ B.

This delivers a simple, class-wide policy rule while making explicit which part of the distribution

the teacher is targeting. (Section 3.2 briefly discusses student-specific levers; when feasible, such

levers are weakly welfare-improving relative to any single-environment benchmark.)

First-order characterization. Write z := (lnκ1, lnκ2) and let c∗(z; I, β̂∗) be the parental opti-

mum on production frontier given the teacher’s posterior beliefs about benefits. The Jacobian

J(z; I, β̂∗) :=
∂c∗(z; I, β̂∗)

∂z
with entries Jjk =

∂c∗j
∂ lnκk

measures how the optimal outcomes respond to small cost/productivity shifts. For small moves,

∆c ≈ J ∆z; for larger moves, the mapping is nonlinear, but the endpoint FOCs evaluate J at the

chosen z⋆.

The teacher chooses ∆z subject to a convex technology–space budget C(∆z) ≤ B. When we use

the quadratic form

C(∆z) = 1
2 ∆z⊤W ∆z, W ≻ 0,

the symmetric, positive-definite matrix W captures how difficult it is for the teacher to shift costs

in technology space. Diagonal entries encode how expensive it is to relax costs for each skill, while

off-diagonals allow for spillovers or complementarities in moving both costs at once (if W = I,

all directions in z are equally costly). It is important to distinguish W from κi; W captures how

difficult it is for teachers to shift costs, whereas κi summarizes those very costs, capturing how

difficult it is for parents to shift skill levels.

The KKT condition for the teacher’s problem,

max
∆z

U
(
c∗(z0 +∆z; I, β̂∗); β̂∗

)
s.t. C(∆z) ≤ B,

is

∇z U
(
c∗(z⋆; I, β̂∗); β̂∗

)
∝ ∇C(∆z⋆), (10)

and, by the chain rule,

∇zU = J(z⋆; I, β̂∗)⊤∇cU
(
c∗(z⋆; I, β̂∗)

)
.

6The role of τ is to capture an instructional target level; Duflo et al. study how x⋆ (a target) depends on the
distribution and payoff curvature. Here we impose a simple, testable benchmark in which the teacher chooses a
single classroom environment aimed at a chosen percentile; we focus on τ = 0.5 (the median) for symmetry and
transparency.

17



Under quadratic costs, ∇C(∆z⋆) = W ∆z⋆, so

∆z⋆ ∝ W−1 J⊤∇cU (move in z along utility gain per technology-cost).

Mapping back to outcomes,

∆c⋆ ≈ J ∆z⋆ ∝ J W−1 J⊤︸ ︷︷ ︸
M(z⋆; I, β̂∗) ≻ 0

∇cU
(
c∗(z⋆; I, β̂∗)

)
.

Interpretation.

• J⊤∇cU takes the utility gradient from outcome space to technology space: in other words, it

captures which cost reductions raise utility fastest once parents re-optimize (under the teacher’s

posterior beliefs).

• W−1 reweights that direction by how easy each cost move is for the teacher.

• M := J W−1J⊤ is the induced metric in outcome space: it tells us which outcome directions

are easiest to deliver, given both teacher costs (W ) and skill level responsiveness (J) which is

formed under the teacher’s posterior beliefs about benefits.

Hence the globally optimal change in outcomes points along the direction M ∇cU ; in other words,

the utility normal, weighted by the metric M that captures how costly different outcome moves are

for the teacher operating on her posterior beliefs.

Benchmark: symmetric teacher costs in outcome space. If the composite metric M is

locally proportional to the identity (i.e., movements in outcome space are equally difficult), the

optimal class move aligns with the utility normal of the representative student under the teacher’s

posterior beliefs:

∆c⋆ ∥ ∇cU
(
c∗(z⋆; Ii(τ), β̂

∗
i(τ))

)
.

With τ = 0.5 and a symmetric, single-peaked baseline distribution, this implies the classroom

environment is chosen so that the expansion path for the median aligns with that student’s IC-

normal as perceived by the teacher under her posterior beliefs. In other words, if the teacher

believes the median student is of Type A (i.e., desires more well-roundedness), the teacher should

tilt technology toward the weaker skill (i.e., lower its cost); if Type B, the reverse should occur.

Figure 5 illustrates this benchmark if a teacher believes the median student is of Type A.

Misalignment and the role of information. When teachers’ posterior beliefs β̂∗
i(τ) diverge

from the true parameters βi(τ), the chosen classroom environment ∆z⋆ will be misaligned with

students’ actual preferences. This misspecification can lead the teacher to misclassify the represen-

tative student’s type (Type A versus B), allocating effort toward the wrong skills.

The information treatment improves alignment when parent beliefs are more accurate than

teacher priors. Bayesian updating then moves teachers’ posterior beliefs β̂∗
i(τ) closer to the truth,
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Figure 5: Teacher’s response: shift production towards high-return skills
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Notes: The teacher chooses a classroom environment to align the representative student’s expansion path with their
IC-normal, based on the teacher’s beliefs about the student’s benefit parameters. The figure shows a classroom
where the teacher believes the median student is of Type A, so she shifts technology to lower the cost of the weaker
skill.

leading to better-targeted effort allocation. Since the teacher applies a classroom-level policy aimed

at the representative student, correcting beliefs about that student generates spillovers to others

in the class. Students similar to the representative student benefit most directly, while effects on

students far from the target may be smaller or even negative if the shift moves instruction away

from their needs.

Remark on individual levers. If student-specific ∆zi (or student-time allocations) are feasible,

then a menu {∆zi} weakly dominates any single ∆z by allowing movement along each student’s own

IC-normal. We treat the classroom-wide ∆z as a policy benchmark: it is realistic when instruction

and resources are common at the class level, and it gives sharp, testable directional predictions.

4 Data and Descriptive Statistics

4.1 Parent Survey Overview

The parent survey was administered on paper and took approximately 15-20 minutes to complete.

Surveys were conducted before parent-teacher meetings, as this represented the point of greatest

contact with parents. Participation was voluntary, and no compensation was offered to parents.

Parents were told that the survey was being conducted to help the school better understand parent

priorities and that their responses would be shared with the school and teachers either immediately

(treated group) or at the end of the school year (control group). The survey was administered in
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English, but parents were allowed to ask for clarifications in their native language.

Motivated by the model in Section 3, the key components of the survey are the elicitation of

parents’ ratings of their child’s current abilities (skill levels) and, given where they perceive their

child to be, their rankings of which skills are most important to improve (skill preferences). The

survey also contained a rich set of parent demographics (a full list is provided in Appendix C).

These measures allow us to analyze the relationship between perceived ability levels and improve-

ment priorities and shed light on whether observed specialization reflects production constraints or

preference heterogeneity.

4.1.1 Skill Ratings

Parents were asked to rate their child’s current abilities (Figure 6, Panel A) across each of the

nine skill dimensions on a scale from 0 to 100, where 0 represents the “lowest level possible” and

100 represents the “highest level possible.” Respondents were explicitly instructed not to use 100

unless they believed their child had no room for improvement in that skill. This measure provides

a quantitative assessment of perceived current ability levels and helps identify areas where parents

perceive strengths and weaknesses in their child’s development.

Figure 6: Parent Survey Instrument

(A) Skill Levels: 0–100 ratings of current abilities (B) Skill Preferences: 1-9 ranking of marginal im-
provement priorities

Notes: Panel A shows the 0-100 skill levels question; Panel B shows the 1-9 skill preference ranking framed as which
improvement would benefit the child the most, conditional on current levels. Full wording in Appendix C.

The skill level measure is comparable to those used in other studies measuring subjective assess-

ments of abilities (Dizon-Ross, 2019; Bergman, 2021) and allows for creating standardized measures

of perceptions that can be compared across dimensions and between respondents.

4.1.2 Skill Preferences

In addition to perceived skill levels, parents were asked for their skill preferences — in other words,

a ranking of the nine skills in order of importance for improvement, from most important (1) to

least important (9) (Figure 6, Panel B). Parents also ranked the three broader categories (academic,

social, and emotional skills) in order of importance for improvement. This forced-choice ranking

methodology was designed to capture relative valuation, with the measure itself serving as a proxy
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for the marginal rates of substitution between different skill dimensions. In practice, since the

survey was administered on paper, parents reported ties despite instructions to avoid them; I break

these ties by assigning the average rank for the tied positions (e.g., if two skills are tied for 2nd

place, both receive a rank of 2.5).

Asking parents to rank skills by importance offers several advantages over alternative approaches

for measuring preferences for improvement. A natural alternative would be to ask parents to rate

the importance of improving each skill on a Likert scale (e.g., 1-5). However, such ratings are

subject to scale-use bias and often lead to ceiling effects (Chyung et al., 2020), making it difficult

to discern true preference heterogeneity.

4.2 Demographics and Validation

Parent-reported skill levels display strong and systematic relationships with independently validated

behavioral measures. I administered the Strengths and Difficulties Questionnaire (SDQ, Goodman

(1997)), a widely-used behavioral screening tool, in the same parent survey. I find that the nine

elicited skill levels correlate sensibly with SDQ subscales (Appendix Figure A.1). Higher scores on

the four SDQ problem subscales (emotional symptoms, conduct problems, hyperactivity, and peer

problems) are consistently associated with lower parent-reported skill levels across all nine dimen-

sions, with magnitudes ranging from 1.6 to 5.1 points per standard deviation increase in the SDQ

scale. Conversely, higher prosocial behavior scores predict 2.1 to 6.0 point increases in skill levels.

The largest associations appear for self-awareness (up to -5.0 points for hyperactivity), persever-

ance (-5.1 points for hyperactivity), and empathy (+6.0 points for prosocial behavior), suggesting

parents integrate diverse behavioral signals when assessing their children’s capabilities. All coef-

ficients are statistically significant at conventional levels. These patterns persist when controlling

for school-by-grade fixed effects and are robust to using within-child standardized skill levels rather

than raw levels. While I report raw skill level associations for interpretability, subsequent analy-

ses employ within-student standardized measures, as the theoretical framework and experimental

design focus on relative strengths across skills (specialization) rather than absolute levels.

The elicited skill preferences move sensibly with family characteristics and stated aspirations

(Appendix Figure A.2). Higher-income households place relatively more weight on social skills and

less on academic skills, fathers emphasize social and academic skills more and emotional skills less

relative to mothers, and parents of children in higher grades prefer improving academic skills more

and emotional skills less. I also examine how skill preferences vary with parents’ aspirations for

their child’s future career, and find that parents who aspire for their child to be a mechanic or

engineer place markedly higher priority on improving academics relative to those who aspire for

their child to be a business leader. By contrast, priorities show no systematic relationship with

child gender, birth order, or parental education. Together with the sensible demographic correlates

of skill levels (Appendix Figure A.1), these validation exercises indicate that both the skill levels

and skill preferences capture meaningful variation in parental perceptions rather than measurement

error.
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5 Preference-Level Slopes

Following Section 3, I define our empirical measure of the preference-level slope as the slope from

regressing parents’ skill preference ranks on the corresponding standardized skill levels. I maintain

the convention that higher skill preference ranks indicate higher priority: I multiply skill preference

ranks by -1 so that higher values indicate higher priority (e.g., rank 1 → rank -1). Therefore, a

negative slope indicates that parents place higher priority on improving weaker skills, and a positive

slope indicates that parents place higher priority on improving stronger skills. We estimate two

versions: (i) within a skill, across students (e.g., regressing math skill preference ranks on skill

levels) and (ii) within a student, across skills (i.e., regressing the nine skill preference ranks on the

nine skill levels for a given student).

5.1 Within-Dimension Slopes (across students)

Before running regressions, I plot the data to visually demonstrate the connection between the

theory and data. Figure 7 plots skill levels and skill preferences for academic versus socioemotional

skills. Panel A shows a binned scatter plot of raw (0-100) skill levels for academic skills against

skill levels for non-academic skills (social, emotional). The 45-degree line separates students who

are relatively stronger in academic skills (above the line) from those who are relatively weaker

(below the line). Arrows for each point indicate the share of parents that place higher priority on

improving academic versus socioemotional skills within each cell. For example, a fully rightward

arrow indicates all parents prefer improving academic skills, and a fully upward arrow indicates all

parents prefer improving socioemotional skills.

In the model, if families only vary in production costs, then movements in skill levels and skill

preferences should follow the Type A pattern illustrated in Figure 4: students that are relatively

weaker in academic skills should benefit more from improving academic skills (arrow points towards

academic skills), and students that are relatively stronger in academic skills should benefit less from

improving academic skills (arrow points up away from academic skills). This pattern is exactly

what we observe in Figure 7, indicating that we are closer to the Type A case where production

constraints dominate specialization decisions.

Panel B shows the corresponding relationship between standardized skill levels and skill pref-

erences for academic skills. Students who are relatively weaker in academic skills place higher

importance on improving academic skills. Conversely, students who are relatively stronger in aca-

demic skills place higher importance on improving socioemotional skills. This negative relationship

is consistent with the Type A pattern in the model, where production constraints dominate spe-

cialization decisions.

I show the relationship between skill levels and skill preferences for each category in Figure 8.

For each skill category, I calculate the quintiles of the students’ skill levels, and plot the average

skill preference rank within each quintile. The relationship between these transformed ranks and

standardized skill levels is monotone and downward sloping for all three categories (academic,

social, emotional). This is consistent with parents of students with relative weakness (negative skill
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Figure 7: Academics Versus Socioemotional Skills: Skill Levels and Skill Preferences
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(B) Academic Skill Preference by Skill Level

Notes: Panel A shows the scatter plot of academic skill levels against non-academic skill levels. The 45-degree line
separates students who are relatively stronger in academic skills (above the line) from those who are relatively
weaker (below the line). Points are binned by cell, with size proportional to the number of students in the cell.
Arrows indicate the the share of parents that place higher priority on improving academic versus socioemotional
skills within each cell. Panel B bins within-student standardized skill levels by quintile and plots the average skill
preference rank for each quintile. The y-axis is reversed so that higher values indicate higher priority (rank 1 =
most important).

levels) placing higher priority on improving that skill compared to parents of students for whom

the skill is a relative strength (positive skill levels). I plot the same figure for each of the nine skill

dimensions in Appendix Figure A.3, and find similar downward-sloping patterns for every skill.
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Figure 8: Average Parent Skill Preference Rank Within Skill Level Quintile

Notes: Figure shows average parent skill preference rank within quintiles of standardized skill levels, by category.
The y-axis is reversed so that higher values indicate higher priority (rank 1 = most important). Points show
quintile means; bars show 95% confidence intervals.

I then formally estimate the within-dimension preference-level slopes running the regression

Skill Preference Ranki,j = αj + βj Skill Leveli,j + ϵi,j , (11)

separately for each skill dimension j. Here, βj is the preference-level slope for skill or skill

category j. In a pooled regression across all skills, the slope is negative and precisely estimated:

the slope is −0.40 (s.e. 0.024), implying that a one unit increase in a child’s standardized skill level

is associated with a 0.46 decrease in the skill preference rank (i.e., less important to improve).

To obtain the slope for each dimension, I estimate a single stacked regression that allows the

slope, βj , to vary by dimension. I report the implied slopes, and find they are negative for every

dimension, with the decline steepest in mathematics (βMath = −0.518, s.e. 0.043). Slopes are still

substantially negative for other dimensions, with the most shallow slopes for science (−0.195, s.e.

0.048) and perseverance (−0.116, s.e. 0.049). Using an analogous stacked regression after averaging

skill levels and skill preferences by category, the category-specific slopes are: academic −0.481 (s.e.

0.050), social −0.443 (s.e. 0.047), and emotional −0.347 (s.e. 0.053). The preference-level slopes for

each skill category are reported in column 1 of Table 2, while slopes for the full list of 9 dimensions

are reported in Appendix Table B.3.
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Table 2: Preference-Level Slopes by Skill Category and Grade

Dependent Variable: (1) (2) (3) (4) (5)
Skill Preference Rank Pooled Grade 1 Grade 4 Grade 7 Grade 10

Skill Levels
Academic -0.4811*** -0.0509 -0.4661*** -0.4083*** -0.5924***

(0.0500) (0.0922) (0.1014) (0.0839) (0.0900)
Emotional -0.3465*** -0.2751*** -0.4500*** -0.4091*** -0.4594***

(0.0530) (0.0681) (0.1177) (0.1140) (0.0869)
Social -0.4425*** -0.1102 -0.3676*** -0.3053*** -0.5382***

(0.0468) (0.1055) (0.0948) (0.0938) (0.0960)

Statistics
Observations 10,016 10,016 10,016 10,016 10,016
Adjusted R2 0.0409 0.035 0.035 0.035 0.035

Notes: Entries report slope coefficients βj (average marginal effects) from -Skill Preference Ranki,j = αj +
βj Skill Leveli,j ×Skill Categoryj + ϵi,j . I interact skill levels with skill category indicators to obtain category-specific
slopes. I interact with grade indicators to obtain grade-specific slopes for columns (2)–(5). The outcome is the
parent’s skill preference rank for improvement (1-9), multiplied by -1 so that larger numbers indicate greater priority.
The dependent variable, Skill Leveli,j is standardized within-student. Column (1) shows the pooled category-specific
slopes. Columns (2)–(5) display selected grade-specific slopes (Grades 1, 4, 7, and 10) to illustrate how the strength
of the negative relationship between own skill level and preference for improvement steepens at higher grades.

Standard errors in parentheses, two-way clustered (student, classroom).

Significance codes: *** p < 0.01, ** p < 0.05, * p < 0.1.

Through the lens of the model, these patterns imply that across students, variation in who

specializes in a given skill is primarily driven by production constraints rather than differences

in real or perceived benefits. This is most pronounced for academic skills, consistent with either

production constraints being relatively more dominant for academic skills or variation in benefits

being relatively more dominant for social and emotional skills.

5.2 Heterogeneity by Grade Level

Next, I examine whether the preference-level slope varies by grade. I estimate the slope with an

analogous stacked regression, allowing the slope to vary by category and grade. I plot the results

in Figure 9. The slope is negative in every grade yet indistinguishable from 0 for classes 1 and 2,

and increasingly negative reaching between -0.5 to -0.7 for grades 9-10. I report the preference-level

slopes for grades 1, 4, 7, and 10 of Table 2.
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Figure 9: Preference-Level Slope by Grade

Notes: Points show the grade-specific preference-level slope for each skill category, defined as the average marginal
effect of standardized skill level on the parent’s skill preference rank. Slopes are estimated from a single stacked
regression of −Skill Preference Ranki,j on Skill Leveli,j interacted with grade indicators (classes 1–10) and skill
category indicators. Vertical bars are 95% confidence intervals based on two-way cluster-robust standard errors
(student and classroom). Negative values indicate that, within a grade, higher skill levels are associated with lower
priority to improve the skill.

This pattern suggests that specialization driven by production constraints becomes more pro-

nounced as children age, consistent with the idea that as children grow, the costs of improving

weaker skills relative to stronger skills become more prominent drivers of specialization. This may

reflect both increasing differentiation in the cost of producing skills as students age, or the benefits

to skills becoming more similar as students approach upper secondary school.

5.3 Within-Student Slopes (across dimensions)

I now turn to the within-student preference-level slopes, which measure how a child’s skill levels

relate to parents’ skill preferences across dimensions. I estimate within-student preference-level

slopes by regressing skill preference ranks on the associated skill levels for each parent. The average

within-student slope is negative (-0.43), with wide dispersion across students (SD = 1.25). I show

the histogram of individual student slopes in Appendix Figure A.4. This indicates that, within a

given child, skills that parents prefer to improve most tend to be those where they perceive their

child to be weaker; this is consistent with specialization that is driven by production constraints

rather than by differences in benefits.

I relate this slope to parental satisfaction to gauge whether observed specialization aligns with

perceived benefits. I compare the preference-level slope to two satisfaction measures: (i) satisfaction

with the child’s progress and (ii) overall satisfaction with the school. Both are measured on a four-

point scale from “completely satisfied” to “completely dissatisfied.” Regressing an indicator for

being completely satisfied on the within-student slope shows that more positive slopes (indicating

more aligned skill levels and skill preferences) are associated with higher satisfaction with the child’s

progress (coefficient 0.019, s.e.=0.008), but not with satisfaction with the school (coefficient 0.003,

s.e. 0.010). The marginal effect is economically meaningful: going from the most negative slope
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observed (-3.15) to the most positive slope (3.54) raises the probability of being completely satisfied

with the child’s progress by 12.7 percentage points (baseline mean = 52%).

In the model, more positive within-student slopes indicate that the child’s current mix of skills

aligns more closely with the parent’s marginal benefits — in other words, what the parent most

wants improved. Geometrically, this is what we expect when the child’s natural expansion path is

closer to the indifference-curve normal, so incremental learning goes in a direction that raises utility

fastest. Practically, parents report higher satisfaction with their child’s progress when observed

specialization lines up with what they value, while the lack of correlation with satisfaction about

the school suggests that the slope captures a dynamic growth alignment rather than static school

quality. These patterns reinforce the cost-side reading of the average negative preference-level slope

in this setting and motivates the information experiment that follows.

6 Information Experiment

The cross-sectional evidence points to cost-side forces as a central driver of specialization. To test

the mechanisms implied by the model, I conduct a production-side shock by informing teachers

about parent skill levels and skill preferences. The model predicts that if teachers update their

beliefs about student benefit parameters based on this information, their classroom-level instruction

should focus more on skills parents place the highest marginal value on, thus shifting students’

portfolios toward parent-prioritized skills.

6.1 Teacher Survey

The teacher survey was administered online at baseline and at endline using Qualtrics. It col-

lected comprehensive information about teachers’ professional backgrounds, pedagogical philoso-

phies, and, most importantly, their skill preferences for (i) a typical student, (ii) specific individual

students in their class, and (iii) their beliefs about how parents would rank skill priorities for those

same students. Descriptions of the full survey instrument are provided in Appendix C.

6.1.1 Teacher Demographics and Professional Background

The survey collected standard demographic and professional information including gender, educa-

tion level, years of teaching experience, and tenure at the current school. This baseline information

allows analysis of how teacher characteristics influence their beliefs about student development

priorities and their responsiveness to information about parent preferences.

6.1.2 Teaching Philosophy and Self-Efficacy

To understand the context within which teachers make instructional decisions, the survey measured

teachers’ views on their professional responsibilities and their self-efficacy across different teaching

domains.
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Teachers rated the importance of various responsibilities (e.g., improving student academic

achievement, incorporating parent priorities, and managing student behavior) on a five-point scale

from “not important” to “extremely important.” This process provides insight into how teachers

conceptualize their role and the relative weights they place on different aspects of their jobs.

A validated teacher self-efficacy scale was also included, with items such as “how much can

you do to control disruptive behavior in the classroom?” and “how much can you do to motivate

students who show low interest in school?” Teachers responded on a nine-point scale ranging from

“nothing (1)” to “a great deal (9).” This scale measures teachers’ beliefs about their ability to

influence various student outcomes, which may mediate teachers’ responsiveness to information

about parent preferences.

6.1.3 Rankings for Students

The core component of the teacher survey paralleled the parent skill preference questions, but with

three distinct variations designed to assess alignment between teachers and parents, and to measure

how teachers form beliefs about parent preferences. First, teachers ranked the nine skill dimensions

for a typical student they encounter in their teaching. This provides a baseline measure of teachers’

general pedagogical priorities. Second, for six specific students, teachers provided skill preference

rankings based on their own professional judgment about what each individual student needed

most. Students were selected through stratified random sampling based on the parent survey. Two

students were chosen from families prioritizing academic, social, and emotional skills, respectively.

In cases where fewer than six students had parent survey data, all available students were included.

The first two variants capture teachers’ own assessment of individual student needs. The third

variant is distinct in eliciting teachers’ beliefs about parent preferences: for the same six students,

teachers were asked to predict how they believed each student’s parent would rank the skill devel-

opment priorities. This measure enables direct comparison between teachers’ beliefs about parent

skill preferences and parents’ actual stated skill preferences.

Teacher responses reveal several striking patterns in the baseline data. Teachers demonstrate

poor calibration about individual parent preferences: the correlation between teacher beliefs about

parent skill preference rankings and actual parent rankings is close to zero. More systematically,

teachers appear to project their own professional priorities onto parents, which I discuss in more

detail in Section 7. The teacher skill preference data also shows that while parents tend to prioritize

academic skills most highly, teachers’ own professional priorities tilt more toward social and emo-

tional development. I show the full distribution of teacher skill preferences in Appendix Figure A.5.

This preference divergence, combined with teachers’ poor beliefs about parent preferences, creates

substantial scope for misalignment between classroom instruction and family priorities.

This baseline misalignment provides the foundation for testing whether structured informa-

tion provision can improve teacher-parent alignment and ultimately shift student outcomes. The

experimental design leverages the fact that teachers have systematically biased beliefs about par-

ent preferences, making information provision potentially valuable even in a context where formal
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communication channels already exist between teachers and families.

6.1.4 Pedagogical Strategies for Skill Development

In addition to facing uncertainty about parent preferences, teachers also face uncertainty about how

to effectively develop the skills they prioritize. Therefore, the teacher survey included a component

designed to elicit teachers’ beliefs about effective pedagogical strategies for developing each of the

nine skill dimensions. This component was informed by the literature on social and emotional

learning (SEL) and evidence-based teaching practices.

For each of the six social and emotional skill dimensions, teachers were presented with four

evidence-based teaching strategies and were then asked to rank these strategies from most effective

(1) to least effective (4) based on their professional judgment. A full list of the strategies presented

is provided in Appendix Section C.

This component of the survey enabled the creation of a second treatment in which teachers

receive an aggregated report on the effectiveness of pedagogical strategies based on the collective

responses of teachers within their school. As described in the experimental design section, this

second treatment was cross-randomized with the first treatment, which provided teachers with

information about parent skill levels and skill preferences.

6.2 Experimental Design

The experimental design addresses two key questions, (1) whether teachers update their beliefs and

behaviors when provided with information about parent preferences, and (2) whether supplementing

this preference information with concrete pedagogical strategies enhances teacher responsiveness.

To answer these questions while minimizing spillover concerns, I employ a two-stage randomization

design at the school-grade and teacher levels:

6.2.1 First Stage: Grade-Level Randomization

The first level of randomization occurs at the grade level within each school. Grades are randomly

assigned to either receive or not receive pedagogical strategies for developing different skill dimen-

sions. This design choice is motivated by the hypothesis that teachers primarily communicate with

other teachers in their grade at the same school, making grade-level assignment a natural boundary

to prevent spillover.

To further ensure the Stable Unit Treatment Value Assumption (SUTVA) holds, I implement

an odd/even grade split, where odd-numbered grades (1, 3, 5, 7, 9) in a school are assigned to

one condition and even-numbered grades (2, 4, 6, 8, 10) to the other. This spatial separation

minimizes the risk of treatment contamination, as teachers in adjacent grades typically have fewer

opportunities for professional interaction with each other than with teachers within the same grade.
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Figure 10: Treatment Assignment

6.2.2 Second Stage: Teacher-Level Randomization

Within each grade, I then randomize at the classroom (teacher) level whether teachers receive

information about parent preferences. This information includes aggregated data on how parents

of students in their specific class rate their children’s current abilities and rank the importance of

improving each dimension.

To maximize statistical power for the primary contrast (receiving both treatments vs. receiving

neither), I use an unbalanced randomization:

• Grades assigned to receive strategies: 80% of teachers are randomly selected to also receive

parent information; 20% receive only strategies.

• Grades assigned not to receive strategies: 20% of teachers are randomly selected to receive

parent information; 80% receive neither treatment.

This allocation results in approximately 40% of teachers receiving both treatments, 40% re-

ceiving neither, and 10% receiving each treatment alone: it provides optimal power for the main

comparison while still allowing for tests of individual treatment effects. I show the randomization

achieved balance across teacher and student characteristics in Appendix Table B.4.

6.3 Implementation Through Web Portal

The intervention is delivered through a custom-built web portal that provides teachers with access to

treatment information in an intuitive, user-friendly format. To encourage proper implementation,

we conducted demonstration sessions with all teachers: we illustrated how the information tool

could be used to understand parent preferences and potential ways to incorporate these insights into
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their teaching approaches. These sessions focused on showing teachers how to navigate the website,

interpret the visualizations of parent preferences, and connect these preferences to pedagogical

strategies. School administrators were appointed as points of contact to address any questions or

challenges teachers might encounter while using the tool.

6.3.1 Access and Authentication

Each teacher receives individual login credentials via email, with access restricted to their assigned

treatment condition. The portal uses secure authentication to ensure teachers can only view infor-

mation relevant to their treatment status. This individualized access allows for precise tracking of

teacher engagement with the intervention, including login frequency, pages viewed, and time spent

on different components of the portal.

6.3.2 Interface and Content

The portal presents information through several organized tabs:

1. Welcome: this tab provides an introduction to the portal and navigation instructions, with

content tailored to the teacher’s treatment assignment.

2. Class Overview (Parent Information): this tab provides a classroom overview. Each row

corresponds to a student, and the columns show which skill category (academic, social, or

emotional) each parent identified as most important for improvement, along with the parent’s

perceived skill levels for their child. The table is sorted by default so that rows are grouped

by the parents’ top skill priority. The skill category with the most parents prioritizing it

is highlighted at the top, allowing teachers to quickly identify common themes in parent

preferences within their class. A sample rendering is shown in Figure 11, Panel A.

3. Student Reports (Parent Information): this tab shows the full student-level reports.

Each report includes the parent’s skill levels (ratings of current abilities) across all nine

dimensions, as well as the parent’s skill preference ranking of which skills are most important

to improve. The report features both tabular data and interactive visualizations to help

teachers quickly grasp each student’s unique profile. An example student report is shown in

Figure 11, Panel B.

4. Classroom Report (Parent Information): this tab presents the same information as the

student reports, but averaged at the classroom level. This summary enables teachers to see

overall patterns in parents’ perceptions and priorities.

5. Strategies for Improvement (Strategy Information): this tab summarizes the peda-

gogical strategies for developing each of the six socioemotional skills, based on the aggregated

rankings provided by teachers at baseline. For each skill, the tab lists the four strategies

along with their average effectiveness ranking among teachers in the school. An example of

this tab is shown in Figure 12.
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Figure 11: Web-Portal Displays

(A) Class Overview

(B) Student Report

Notes: Panel A shows the class overview tab; Panel B shows an example student report. Names and numbers
randomly generated, but visual layout is identical to the actual portal.
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Figure 12: Example Strategies Report

Notes: Example of the strategies report tab, showing pedagogical strategies for developing interpersonal skills. All
six socioemotional skills are included. Each has four associated pedagogical strategies. Numbers displayed are
specific to the school, and are calculated based on teacher rankings of strategy effectiveness collected at baseline.

The portal’s design facilitates easy interpretation of parent preferences through color-coded

visualizations and clear tabular formats. For instance, skill dimensions are consistently color-coded

by category (green for academic, orange for emotional, blue for social), and skill levels employ a

red-yellow-green color scale to highlight areas of strength and opportunity. Skill preferences are

presented as ranked lists to clearly communicate relative priorities.

In the strategies section, teachers can access specific, actionable pedagogical approaches for each

noncognitive skill. These strategies include brief descriptions and implementation guidance, along

with indicators of how commonly other teachers ranked each strategy as most effective.

6.4 Treatment Implementation and Compliance

I implemented the information intervention through a custom-built web portal that provided teach-

ers with individualized login credentials and access to their students’ parent-reported skill levels

and priority rankings. The platform tracked comprehensive usage data including login frequency,

session duration, and specific content accessed.

Implementation proceeded differently across the five participating schools. While 242 teachers

were initially assigned to treatment across all schools, practical challenges emerged that significantly

affected compliance and data collection. Two schools withdrew from the study entirely before

endline data collection. Two additional schools either failed to distribute login credentials to their

teachers or achieved login rates below 15%.
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The main results presented here focus on the one school that successfully implemented the

intervention. This school is the largest school in the sample with 106 classrooms. Even in this

successful implementation, compliance was limited: only 46% of treated teachers logged into the

platform at least once during the intervention period. Among those teachers who did access the

platform, usage varied substantially: some teachers made single brief visits while others engaged

more systematically with the content.

Interestingly, the school’s administration responded to the baseline parent survey results by im-

plementing school-wide assemblies and developing lesson plans aimed at addressing the skill prior-

ities identified in the parent data. This represents a form of treatment spillover that likely affected

both treatment and control teachers within the school, and it potentially attenuated measured

treatment effects while demonstrating the policy relevance of the parent preference information.

The low compliance rate and administrative response highlight important features of infor-

mation interventions in educational settings. Teachers face multiple competing demands on their

attention, and information provision alone may be insufficient without accompanying incentives or

administrative support. Nevertheless, the experimental results suggest that even partial compli-

ance can generate meaningful changes in student outcomes; these results are consistent with the

hypothesis that information about parent priorities can serve as a low-cost production shock that

reallocates instructional effort toward high-value dimensions.

7 Teacher Beliefs and Updating

Before turning to treatment effects on student outcomes, I document two facts about teacher beliefs

at baseline, and test whether the information intervention improved belief accuracy.

Baseline misalignment. Teachers were asked, for a random subset of students, to predict how

that student’s parent would rank the importance of improving the nine academic, emotional, and

social skills (skill preferences).7 To reduce noise and focus on broad priorities, I group the nine

skills into three categories (academic, social, emotional) and average skill preferences within each

category. Figure 13 plots, for each classroom, the average parent skill preference rank (x-axis)

against the average teacher belief about parents skill preference (y-axis) for the sampled students.

At baseline, beliefs are essentially uncorrelated with truth: points scatter around a flat line. In

other words, even in these relatively well-resourced schools with routine parent-teacher meetings,

teachers had little signal about what parents most wanted improved.

Where do baseline beliefs come from? Projection. To probe how teachers form beliefs when

they lack signal, Figure 14 keeps the same y-axis (i.e., average teacher belief about parents) but

replaces the x-axis with the teacher’s own skill preference ranking averaged across the same students.

A strong positive relationship emerges: it appears that teachers project their own priorities onto

7Although ties were discouraged in the instructions, the parent survey was conducted on paper, so skill preference
ranks allowed ties; teacher elicitation mirrored this.
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parents. This result is consistent with the model’s misperception channel: in the absence of reliable

information on parents’ skill preferences, teachers substitute their own ranks for the parents’, thus

creating scope for misallocation even when classroom effort is intended to reflect parental priorities.

Figure 13: Baseline Teacher Beliefs Versus Parent Skill Preferences (Class Averages)

Notes: Nparent = 550. Nteacher = 103. Each point represents one classroom, with skill preferences averaged across
the sampled parents. For each classroom, six parents are sampled (two each from parents prioritizing academic,
social, and emotional skills). If fewer than six parents completed the survey for a given classroom, all available
students are included. The x-axis shows the average parent skill preference rank for each classroom; the y-axis
shows each teacher’s beliefs about parents’ skill preferences averaged over the same students. Perfect accuracy
would lie on the 45-degree line (dashed).

35



Figure 14: Baseline Teacher Beliefs Versus Teachers’ Own Priorities (Class Averages)

Notes: Nparent = 550. Nteacher = 103. Each point represents one classroom, with skill preferences averaged across
the sampled parents. For each classroom, six parents are sampled (two each from parents prioritizing academic,
social, and emotional skills). If less than six parents completed the survey for a given classroom, all available
students are included. The x-axis shows each teacher’s own skill preferences for the sampled students; the y-axis
shows each teacher’s beliefs about parents’ skill preferences for the sampled students. Perfect accuracy would lie on
the 45-degree line (dashed).

Does information correct beliefs? I measure accuracy using four binary outcomes. Exact

Order Match: the teacher’s full ranking equals the parent’s, with ties allowed. Top Skill Match:

the teacher places at least one of the parent’s top-ranked categories among the top. Bottom Skill

Match: teacher places at least one of the parent’s bottom-ranked categories among the bottom.

Top & Bottom Match: both ends are correct.

I study accuracy at two levels: (a) student-level (i.e., does the teacher correctly predict an

individual parent’s ranking?) and (b) classroom average (i.e., does the teacher correctly identify

the average parent’s priorities in her class?). The latter measure is constructed by averaging both

the parent skill preference rankings for each class, and averaging the teacher’s beliefs about those

same parents.

Tables 3–5 report intent-to-treat effects of providing teachers the parent rankings and levels via

the website (Section 6). The analysis is underpowered due to implementation constraints (N = 94

teachers), so I emphasize direction and magnitude. For teacher accuracy about individual parents

(Table 3), I estimate:

Accuracyij,t=1 = α+ βTreatmentj + δAccuracyij,t=0 + γg + ϵij (12)

where Accuracyij,t=1 measures whether teacher j’s endline beliefs correctly match parent i’s

rankings, Treatmentj indicates whether the teacher received access to parent information, Accuracyij,t=0

is the baseline accuracy measure, and γg represents grade fixed effects. Pre-registered specifications

included school fixed effects, but these are omitted here given the final experimental sample comes
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from a single school. Standard errors are clustered at the classroom level. For classroom-level

accuracy measures (Tables 4–5), the unit of observation is the teacher and the specification is anal-

ogous, with the dependent variable measuring accuracy about the classroom average or distribution

of parent preferences. Standard errors are robust to heteroskedasticity.

Student-level accuracy. At the individual student level, point estimates are indistinguishable

from zero and, if anything, slightly negative (Table 3). For example, the ITT on Top Skill Match is

−0.0165 (s.e. 0.0675), with similar nulls for other outcomes. There is strong persistence in accuracy

(baseline-to-endline), but no detectable treatment effect. This suggests that even with information,

teachers did not reliably memorize or track each parent’s unique ranking for the sampled students.

Classroom-average accuracy. In contrast, when I aggregate to the classroom average rank-

ing (i.e., “what does the average parent in my class want?”), treatment effects turn positive and

economically meaningful, though imprecise (Table 4). ITT estimates are on the order of 9–10

percentage points for Top Skill Match and Bottom Skill Match (e.g., +0.0918 and +0.1017), with

similar magnitude for Top & Bottom Match (+0.1028). While not statistically significant, these

effect sizes are large relative to control means (0.27–0.46), and are consistent with teachers updating

their mental model of the typical parent in the class.

Heterogeneity by what parents value most. Table 5 splits classrooms by which category parents

rank as most important, on average. Patterns are intuitive: (i) in classrooms where academics

is the top priority on average, teachers improve in pinning down the top category (ITT on Exact

Order Match +0.199; Top Skill Match +0.145); (ii) where social or emotional skills are the top

classroom priority, teachers become more accurate about the bottom category (ITT on Bottom

Skill Match +0.185 for social; +0.115 for emotional). A natural understanding is that information

helped teachers correctly locate where academics sits in the average parent’s priority ordering: on

top in some classes, lower in others.

At baseline, teacher beliefs about parent priorities were largely noise and heavily colored by

projection. The intervention did not make teachers precise about each parent, but it nudged them

toward a more accurate picture of the average parent in their class, especially with regard to the

relative place of academics in parents’ priorities for their children’s educational goals. In the model,

this matters because teacher policy is a classroom-level cost tilt: getting the class-average benefits

right moves the frontier in the direction that better aligns growth with what families value, even if

idiosyncratic values are harder to track.
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Table 3: Treatment Effects on Teacher Accuracy about Specific Parents

Dependent Variables
Exact Order

Match
Top Skill
Match

Bottom Skill
Match

Top & Bottom
Match

(1) (2) (3) (4)

Variables
Treated -0.0111 -0.0165 -0.0194 -0.0267

(0.0291) (0.0675) (0.0774) (0.0774)
Baseline Accuracy 0.2638∗∗∗ 0.2845∗∗∗ 0.2013∗∗∗ 0.2746∗∗∗

(0.0662) (0.0552) (0.0546) (0.0540)

Statistics
Observations 482 482 482 482
R2 0.07583 0.13548 0.07613 0.12501
Control Mean 0.1292 0.6667 0.6333 0.5542

Notes: Outcomes are parent-level indicators for whether a teacher’s belief matches a given parents’ ranking of skills
(academic, emotional, social). Exact Order Match = 1 if the teacher’s full ranking matches the parents’ ranking,
including ties (e.g., parent 1–2–2 requires teacher 1–2–2). Top Skill Match = 1 if the teacher identifies at least one
of the parent’s top-ranked skills as top. Bottom Skill Match = 1 if the teacher identifies at least one of the parent’s
bottom-ranked skills as bottom. Top & Bottom Match = 1 if both top and bottom categories are correctly identified.
“Treated” indicates teachers who received information about parent rankings and levels. “Baseline accuracy (same
outcome)” is the coefficient on the corresponding baseline measure of that outcome.

Standard errors in parentheses, clustered at the class level
Significance Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Treatment Effects on Teacher Accuracy about Classroom Average

Dependent Variables
Exact Order

Match
Top Skill
Match

Bottom Skill
Match

Top & Bottom
Match

(1) (2) (3) (4)

Variables
Treated 0.0351 0.0918 0.1017 0.1028

(0.0988) (0.1452) (0.1376) (0.1224)
Baseline Accuracy 0.3613∗∗∗ 0.2448∗∗ 0.2439∗∗ 0.3019∗∗∗

(0.1283) (0.1134) (0.1034) (0.1071)

Statistics
Observations 94 94 94 94
R2 0.17440 0.09531 0.18254 0.15772
Control Mean 0.1450 0.4618 0.4122 0.2710

Notes: Dependent variables are indicators for the accuracy of teacher beliefs about parents’ skill rankings (academic,
emotional, social). Grade fixed effects included in all specifications. Exact Order Match = 1 if the teacher’s full
ranking matches the parents’ ranking, including ties (e.g., parent ranking 1–2–2 requires teacher belief 1–2–2). Top
Skill Match = 1 if the teacher identifies at least one of the parent’s top-ranked skills as top. Bottom Skill Match = 1
if the teacher identifies at least one of the parent’s bottom-ranked skills as bottom. Top & Bottom Match = 1 if both
top and bottom categories are correctly identified. “Baseline accuracy” is the coefficient on the corresponding baseline
measure of that outcome. “Treated” indicates whether the teacher received information about parent rankings and
levels.

Clustered standard errors in parentheses
Significance Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 5: Treatment Effects on Teacher Accuracy about Classroom Average by Parent Top
Priority

Dependent Variables
Exact Order

Match
Top Skill
Match

Bottom Skill
Match

Top & Bottom
Match

(1) (2) (3) (4)

Variables
Treated: Parents’ Top = Academic 0.1987 0.1453 -0.0025 0.0639

(0.1239) (0.1820) (0.1693) (0.1585)
Treated: Parents’ Top = Social -0.0878 0.0884 0.1846 0.1196

(0.1056) (0.1733) (0.1673) (0.1455)
Treated: Parents’ Top = Emotional -0.0396 -0.0503 0.1150 0.1608

(0.1020) (0.2385) (0.2263) (0.2149)
Baseline Accuracy 0.3097∗∗ 0.2100∗ 0.2666∗∗ 0.3152∗∗∗

(0.1223) (0.1234) (0.1032) (0.1094)

Statistics
Observations 94 94 94 94
R2 0.22938 0.10416 0.19377 0.16074
Control Mean 0.1450 0.4618 0.4122 0.2710

Notes: Dependent variables are indicators for the accuracy of teacher beliefs about the class average of parents’
skill rankings (academic, emotional, social). Grade fixed effects included in all specifications. Exact Order Match
= 1 if the teacher’s full ranking matches the class average ranking, including ties (e.g., parents 1–2–2 requires
teacher 1–2–2). Top Skill Match = 1 if the teacher identifies at least one of the parent’s top-ranked skills as top.
Bottom Skill Match = 1 if the teacher identifies at least one of the parent’s bottom-ranked skills as bottom. Top &
Bottom Match = 1 if both top and bottom categories are correctly identified. Rows labeled “Treated: Parents’ Top =
Academic/Social/Emotional” correspond to classrooms where the teacher received information about parent rankings
and levels, estimated separately by the parents’ top-ranked category. Coefficients are intent-to-treat effects relative to
control classrooms in the same category. “Baseline accuracy” is the coefficient on the corresponding baseline measure
of the same outcome.
Clustered standard errors in parentheses
Significance Codes: ***: 0.01, **: 0.05, *: 0.1

8 Student Outcome Results

I focus on three outcomes that map directly to the model: (i) skill levels in parents’ most and least

preferred skill categories; (ii) skill preference ranks for parents’ most and least preferred categories;

and (iii) the preference-level slope within students (across dimensions). For each outcome, I estimate

intent-to-treat (ITT) effects using OLS regressions of the form:

Yi,t=1 = α+ βTreatmenti + δYi,t=0 + γg + ϵi (13)

where Yi,t=1 is the endline outcome for student i, Treatmenti is an indicator for whether the

student’s teacher was assigned to receive parent information, Yi,t=0 is the baseline value of the

outcome, and γg represents grade fixed effects. Standard errors are clustered at the classroom

level. The inclusion of baseline outcomes as controls improves precision and helps address potential

imbalances, while grade fixed effects absorb any systematic differences across grades in initial skill

levels or teaching practices.
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(1) Skill levels increase for parents most preferred skill category when teachers were

initially inaccurate. Panel 1 of Figure 15 shows that the average intent-to-treat (ITT) effect on

parents’ skill levels is close to zero. However, this masks important heterogeneity. Panel 2 plots the

interaction between treatment and teachers’ baseline inaccuracy. Teacher inaccuracy is calculated

as the absolute difference between the teacher’s belief about how a given parent ranks a skill and the

parent’s actual ranking. Therefore, the gap varies depending on the teacher-parent-skill triple, with

a higher gap indicating that the teacher was more incorrect about how much that parent valued

improving that skill. The coefficient on the interaction is +0.07 (s.e. 0.03) for the category parents

rated most important and -0.09 (s.e. 0.03) for the least important, both statistically significant.

Panel 3 splits effects by which category parents, on average, valued most across the classroom.

For example, “Parent top category: Academic” compares control to treated classrooms where par-

ents, on average, most preferred improving academic skills. Coefficients are larger when parents

prioritized academics (0.08, s.e. 0.05) than social or emotional skills. This likely reflects that

teachers can more readily reallocate effort in academics, that our belief updating analysis showed

they learned more precisely where academics ranked, and that schools were already running uni-

versal social-emotional programming, and thus made new information about academic preferences

especially actionable.

Figure 16 visualizes heterogeneous treatment effects as a function of the baseline parent-teacher

gap. Strikingly, when teachers were initially accurate (gap = 0), treatment effects run counter to

the intended direction in both panels: skill levels decrease in parents’ most important category

(-0.25 SDs, s.e. 0.14, p=0.09, Panel 1) and increase in parents’ least important category (0.30 SDs,

s.e. 0.12, p=0.02, Panel 2). However, as baseline misalignment grows, effects reverse in the intuitive

direction. For parents’ most important category, treatment effects become positive around gap =

4 (the 75th percentile), though coefficients remain marginally significant at the 10% level. For

parents’ least important category, treatment effects turn negative at moderate gaps and become

significantly so at higher levels of misalignment, reaching -0.39 SDs (s.e. 0.19, p=0.04) at gap = 8.

These patterns are consistent with classroom-level reallocation: teachers initially allocated effort

toward students they thought they understood, but upon learning the true distribution of parent

priorities, they shifted effort toward previously misaligned students, sometimes at the expense of

those they had correctly matched. Since most students fall in the middle of the gap distribution

(median = 2.5), the average treatment effect masks offsetting movements — in other words, teachers

reallocated efforts from well-matched to poorly-matched students within the same classroom.
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Figure 15: Treatment Effects on Skill Levels

ITT Teacher Gap (Interaction) By Class Priority
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Outcome: Estimated Coefficient (95% CI) | Controls: baseline | FE: class | Cluster: teacher_email
Treatment Effects: analysis

Notes: N = 823 parents. Outcome is skill levels (standardized within-student). Estimates control for grade fixed
effects; standard errors clustered at the classroom level. Panel 1 shows ITT effects; Panel 2 interacts treatment with
the baseline teacher-parent gap (higher gap = teacher more incorrect), and plots the interaction terms; Panel 3
splits treatment by which category parents valued most. For example, “Parent top category: Academic” compares
control to treated classrooms where parents’ average top priority was academic skills.

Figure 16: Treatment Effects by Baseline Teacher Accuracy
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Notes: N = 823 parents. Treatment effects are for skill levels (standardized within-student). Treatment effects
control for grade fixed effects with standard errors clustered at the classroom level. Panel 1 shows effects for the
category parents rated least important; Panel 2 for the most important. The x-axis is the baseline teacher-parent
gap (higher gap = teacher more incorrect). The solid line is the marginal effect of treatment estimated from a
regression of the outcome on treatment, the gap, and their interaction; the shaded area is the 95% confidence
interval. The red dashed lines show the 25th, 50th, and 75th percentiles of the gap distribution.
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(2) Skill preferences fall for parents’ most preferred skill category. Panel 1 of Figure 17

shows a clear average intent-to-treat (ITT) effect on parents’ skill preferences; in treated classrooms,

the skill parents had most preferred falls 0.26 skill preference ranks (s.e. 0.09, p=0.006) relative to

control. This pattern is consistent with teachers making it easier for students to develop those skills,

once informed of parent priorities, and parents subsequently judging these skills as less in need of

work. Panel 2 plots treatment interacted with the baseline teacher-parent gap; the interaction

coefficients are small and imprecise (-0.02 to 0.05), indicating that, unlike the skill levels outcome,

parents’ shift in rank orderings does not vary systematically with how wrong teachers were at

baseline. Column 3 splits treated classrooms by the category parents prioritized most, on average.

In line with the treatment effects for skill levels, the decreasing in skill preference rank is largest

when parents’ top priority was academics (-0.30 ranks, s.e. 0.12, p=0.014), somewhat smaller for

social (-0.25 ranks, s.e. 0.11, p=0.028), and positive but only marginally significant for emotional

(-0.21, s.e. 0.13, p=0.099). This suggests that teachers most effectively reoriented classroom effort

when the desired skills were academic, where they have more control and, as our updating analysis

showed, learned most clearly how academics compared to other skills.

Figure 17: Treatment Effects on Skill Preference Ranks

ITT Teacher Gap (Interaction) By Class Priority
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Treatment arm Received Preferences Parent top category: Academic Parent top category: Emotional Parent top category: Social

Outcome: Estimated Coefficient (95% CI) | Controls: baseline | FE: class | Cluster: teacher_email
Treatment Effects: analysis

Notes: N = 823 parents. Skill preference ranks (1-9) multiplied by -1 so higher values indicate more preferred skills.
Positive coefficients therefore indicate the skill becomes more important to improve. Estimates control for grade
fixed effects; standard errors are clustered at the classroom level. Panel 1 shows ITT effects; Panel 2 interacts
treatment with the baseline teacher-parent gap (higher gap = teacher more incorrect); Panel 3 splits treatment by
which category parents valued most. For example, “Parent top category: Academic” compares control to treated
classrooms where parents’ average top priority was academic skills.

(3) Preference-level slope shifts upward for treated students. Recall from Section 5 that

we estimate the within-student preference-level slope by regressing each parent’s skill preference

ranking on standardized skill levels; a more positive slope means that the parent prefers improve-
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ment in stronger skills. Figure 18 shows that the average intent-to-treat (ITT) effect on this slope

is positive though only marginally precise: +0.15 (s.e. 0.11, p=0.162). I am not able to interact

treatment with the baseline teacher-parent gap for the preference-level slope outcome because the

slope is estimated at the student level, not the student-skill level. However, as in my analysis of

skill levels and skill preferences, I split treatment effects by which category parents prioritized most,

on average, in their class.

Splitting treatment by parents’ top average category shows that the effect is largest and statis-

tically significant in classrooms where parents most prefer academics on average (+0.26, s.e. 0.13,

p=0.047), essentially zero in classrooms where they prefer improvement in social skills (-0.00, s.e.

0.14, p =0.990), and positive but imprecise for classrooms where they prefer improvement in emo-

tional skills (+0.18, s.e. 0.13, p=0.165). Together with the skill levels and skill preference results,

this pattern suggests that when teachers learn parents’ priorities, particularly academic priorities,

they reconfigure the classroom so that it is easier for students to build the skills parents value,

making students’ observed skill profiles better aligned with parental preferences rather than with

underlying production cost constraints.

Figure 18: Treatment Effect on the Within-Student Preference-Level Slope

Parent top category: Social

Parent top category: Emotional

Parent top category: Academic

Received Preferences

−0.25 0.00 0.25 0.50
Estimated Coefficient (95% CI)

Outcome: Endline gradient, controlling for baseline gradient and grade FE.
Standard errors clustered at the class level.
Control endline mean: −0.7

Treatment Effects on Ranking−Rating Gradient

Notes: N = 823 parents. Estimates control for grade fixed effects; standard errors clustered at the classroom level.
Full sample ITT effects at the top; Treatment effects split by which category parents valued most at the bottom.
For example, “Parent top category: Academic” compares control to treated classrooms where parents’ average top
priority is academic skills.

Taken together, these findings fit the framework: information to teachers acts as a production

shock that selectively lowers the effective cost of building parent-prioritized skills. By reshaping the

classroom environment rather than only tailoring instruction to individual students, teachers enable

more progress where parents want gains (i.e., skill level improvements for prioritized categories),
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shift students’ overall skill profiles toward parental preferences (i.e., upward preference-level slope),

and reduce parents’ perceived need for further improvement in those areas (i.e., downward rank

movement). In short, providing teachers with clear signals of parental marginal valuations moves

the whole classroom’s skill production away from what is merely easiest to build and toward what

families value most.

9 Model Estimation

To translate the framework into policy terms, I estimate the structural model using Bayesian

methods. The estimation leverages teacher skill rankings as supply-side cost shifters–teachers who

emphasize certain skills should make those skills easier for students to produce. Since students are

plausibly randomly assigned to teachers within grades, these rankings provide exogenous variation

in production costs that can help separate cost from benefit heterogeneity. I extend the two-

skill model in Section 3 to three skill categories (academic, social, emotional) to match the data

structure. The full technical details of the three-skill model are provided in Appendix Section E.

9.1 Estimation Methodology

The model includes demographics as covariates for both preferences (βi) and production costs (κij).

Specifically, I allow class, parental education, household income, and teacher skill rankings to shift

the ease of producing academic versus social-emotional skills. Teacher rankings enter only the cost

equation (not preferences) and provide an exclusion restriction that aids identification.

The model is estimated using Hamiltonian Monte Carlo, with 4 chains of 3,000 post-warmup

draws each. I use skill levels and skill preferences jointly: skill levels (i.e., sij in the model) are

increasing in benefits and decreasing in costs, while skill preferences (i.e., MRSij in the model) are

increasing in both benefits and costs, helping to separately identify the two sources of heterogeneity.

Appendix E provides full technical details on priors, identification, and convergence diagnostics.

9.2 Main Results: Variance Decomposition

Recall from Section 3 that the equilibrium skill ratio decomposes as s∗i = Ti ·λi, where Ti = (βi/(1−
βi))

1/ρ captures the benefits tilt (how much more a parent values skill 1) and λi = κ1i/κ2i captures

the costs tilt (how much easier it is to produce skill 1). Taking logs yields log s∗i = log Ti + log λi,

so the variance of log skill ratios decomposes additively as

Var[log si] = Var[log Ti] + Var[log λi] + 2Cov[log Ti, log λi].

The covariance term reflects identification challenges: while the mapping from (Ti, λi) to observables

is one-to-one in theory, it is empirically weakly identified because the likelihood is nearly flat

along ridges where log Ti + log λi remains constant. Many (Ti, λi) pairs produce nearly identical

predictions in finite, noisy data. Nevertheless, the ratio of the two variance components remains
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well identified and directly measures the relative importance of cost versus benefit heterogeneity in

driving specialization patterns.

Figure 19 presents the posterior distribution for this key quantity: the ratio of cost variance

to benefit variance, Var[log λi]/Var[log Ti]. The median ratio is 1.21 (95% CI: [0.94, 1.62]), with

93.5% of posterior mass above 1.0. This indicates that production constraints vary approximately

21% more across families than do preferences for academic versus social-emotional skills, and is

consistent with the reduced-form preference-level slope analysis in Section 5.

Figure 19: Posterior Distribution of Variance Ratio: Costs / Benefits
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Notes: Distribution shows Var[log λi]/Var[log Ti] across 12,000 posterior draws. Red dashed line marks equality
(ratio = 1); blue solid line shows posterior median (1.21). Ratio > 1 implies production constraints vary more than
preferences.

After controlling for demographics, unexplained residual variation in costs (σℓ1) exceeds that

in preferences (σβ1) by an even larger margin: the median ratio σℓ1/σβ1 = 3.11 (95% CI: [0.42,

70.59]), though with substantial uncertainty. Together, these estimates reinforce that observed

specialization in this setting is primarily driven by what students find easier to learn rather than

by what families value more.
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9.3 Heterogeneity Across Subgroups

Table 6 examines whether the costs-versus-benefits balance differs by grade, income, or parental

education. The variance ratio remains consistently above 1 across all subgroups, though with

considerable overlap in credible intervals due to limited sample sizes within groups. The ratio is

somewhat higher in early grades (median 1.48 for grade 3) than in upper grades (1.42 for grade 10),

though differences are imprecise. Income and parental education show little systematic relationship

with the ratio.8

Table 6: Variance Ratio by Demographic Subgroups

Subgroup N Median Ratio 95% CI P(Costs > Benefits)
By Grade (omitted: Grade 1)
Grade 2 132 1.43 [0.92, 2.81] 0.942
Grade 3 145 1.50 [0.92, 3.00] 0.948
...
Grade 10 209 1.44 [0.93, 2.80] 0.949

By Household Income (omitted: 0–5 Lakh)
5–10 Lakh 303 1.22 [0.93, 1.73] 0.934
10–15 Lakh 425 1.22 [0.94, 1.74] 0.933
Over 15 Lakh 779 1.28 [0.93, 1.91] 0.942

By Mother’s Education (omitted: Less than Secondary)
Secondary 146 1.19 [0.91, 1.70] 0.895
Bachelor’s 500 1.25 [0.94, 1.78] 0.942
Graduate+ 1131 1.26 [0.94, 1.80] 0.945

Notes: Each row shows the posterior median, 95% credible interval, and probability mass above 1 for
Var[log λ]/Var[log T ] within the indicated subgroup. Full results for all grades and father’s education in Appendix
Table B.7.

The current estimation faces several limitations. First, teacher skill rankings, intended as sup-

ply shifters, do not enter significantly in the cost equation; this likely reflects weak instruments

or insufficient sample variation within schools.9 As a result, the model primarily identifies the

variance ratio from cross-sectional patterns in how parents’ skill levels and skill preferences covary,

supplemented by demographic controls. This reflects the fundamental identification challenge:

many (Ti, λi) combinations produce similar skill ratios. Note that while the ratio of variances re-

mains well-identified, decomposing individual-level contributions is not feasible without additional

instruments or longitudinal data that could trace out expansion paths over time. Despite these

constraints, the structural estimates corroborate the reduced-form findings: in this setting, produc-

tion constraints—not preference heterogeneity—are the primary driver of why students specialize

differently across skills.

8Wealthier and more educated families show slightly lower ratios (1.21–1.27 versus 1.17–1.18); this potentially
indicates that higher-resourced households face more uniform production costs, but these patterns are not statistically
distinguishable.

9Future work could exploit teacher turnover or larger multi-school samples to strengthen this identification strategy.
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9.4 Welfare Implications and Counterfactuals

The model framework opens a path toward quantifying welfare gains from policy interventions.

In the model, utility-maximizing parents choose skill bundles subject to a production frontier

determined by (κ1i, κ2i) and budget Ii. As shown in Section 3, when the ratio of costs λi = κ1i/κ2i

is set optimally, the skill ratio converges to a threshold s† =
√
βi/(1− βi) that equates the marginal

rate of substitution with the expansion path. This threshold represents the aligned specialization

level where incremental skill growth due to budget increases (e.g., skill growth over time) moves in

the direction of steepest utility increase.

Observed skill ratios s∗i = Tiλi deviate from this threshold whenever production costs λi =

κ1i/κ2i are misaligned with preferences. As shown in Section 3, the optimal cost ratio that would

implement the aligned threshold is

λ⋆
i =

s†i
Ti

=

(
βi

1− βi

)1/2−1/ρ

.

Counterfactual: Alignment between costs and benefits to skills. In this counterfactual,

I quantify the potential welfare gains from reducing production-preference misalignment using a

simple benchmark. Fix preferences βi and the size of the production possibility set (budget Ii and

overall frontier scale), and ask: how much would utility increase if each family faced production

costs κ⋆i that perfectly aligned with their preferences? Formally, for each parent i, compute:

∆Ui = U
(
c∗(κ⋆i ; Ii, βi)

)
− U

(
c∗(κbaselinei ; Ii, βi)

)
,

where κ⋆i = (κ⋆1i, κ
⋆
2i) satisfies:

κ⋆1i/κ
⋆
2i = λ⋆

i =

(
βi

1− βi

)1/2−1/ρ

.

This counterfactual captures the welfare gain from rotating the academic-vs-non-academic cost

ratio just enough so that the indifference curve is locally orthogonal to the expansion path (Ap-

pendix D.5). Intuitively, λ⋆
i aligns the cost side with what the family values, without expanding or

contracting the overall production possibility set.

To isolate the effect of rotating the frontier, I impose a scale normalization on the frontier.

The CET-consistent sum of cost terms remains constant,
∑

j κ
−ρ
ji is held fixed for each i. This

ensures that the overall size of the production possibility set is constant, while allowing the frontier

to rotate. Under this normalization, I compute utility at the baseline and counterfactural cost

parameters, with optimal choices in each case.

Figure 20 presents the distribution of welfare gains from this counterfactual. The gains are

modest: average gains are on the order of one percent, with a long but thin upper tail. Overall,

the small gains indicate that most families are not far from their aligned mix given these estimated

preferences and production costs.

47



Figure 20: Distribution of Welfare Gains from Aligning Costs and Benefits
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ratio is defined based on βi as described in Appendix Section D.5.

Three features of the estimated environment dampen the estimated welfare gains. First, poste-

rior means for β1 concentrate around 0.3-0.45, so the IC-normal target λ⋆
i only moderately differs

from baseline λi. Second, with ρ = 1.5, the optimal academic share depends on the degree of

the preference tilt (βi/(1 − βi)/ρ), muting the response to cost rotations. Finally, the Bayesian

estimation smooths over extreme heterogeneity (Bayesian shrinkage), reducing the scope for large

misalignments, and large welfare gains.

Taken together, these results suggest that while production-preference misalignment exists, it

is not extreme for most families in this setting. Policies that better align production costs with

parental preferences could yield modest welfare improvements on average, with large gains coming

from stronger preference heterogeneity, steeper production tradeoffs (lower ρ), or interventions that

expand the frontier rather than simply rotating it.

10 Conclusion

To accurately measure student welfare, we must account for individual heterogeneity in preferences

over skills. I document this heterogenity by measuring parents’ perceptions of their child’s skill

levels, and preferences over improving different skills. Combined with a simple model of skill

formation, these measures help answer whether a given student specializes in skills that are easy

to build, or in those that are high value. If families prioritize shoring up weak skills, this implies

those skills hold value, but are difficult to build; conversely families who prioritize further growth

in strong skills signal that building weak skills is relatively easy, but of low value. I show how
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the diagnostic can be measured at the skill or student level, turning an abstract problem into an

actionable one.

In Indian private schools, the evidence points to cost-driven specialization: parents predomi-

nantly want growth in weaker skills. Teachers, however, systematically misperceive those prior-

ities; their beliefs about what parents want track their own tastes rather than families’ values.

A classroom-level randomized intervention that revealed parents’ perceptions and priorities cor-

rected teachers’ average beliefs and shifted growth toward the domains families value most, with

the largest gains where initial misperceptions were largest.

Beyond this empirical finding, the framework is itself a contribution. Treating teachers as cost

shifters who reshape the production frontier for skills organizes how we think about interventions:

some shift skill production (e.g., remedial education that lowers the cost of improving weak skills);

others shift perceived returns (e.g., information about market wages for certain occupations). The

diagnostic distinguishes these channels in the data and suggests how to think about complemen-

tarities across interventions. For example, information about returns may be most effective when

paired with cost-lowering interventions that make it easier to build newly valued skills.

Several limitations remain. The experiment studies one type of school system over the short run;

whether costs or returns drive specialization in other contexts, and long-run substitution across skill

domains, are open questions. Parents’ priorities, while welfare-relevant, may differ from broader

social objectives; incorporating student and policymaker goals is a natural extension. Finally, the

slope is a reduced-form indicator of costs versus returns; pairing it with direct measures of inputs to

skill growth (e.g., teacher time allocation, parental investments) would sharpen our understanding

of mechanisms.

Future work should (i) track longer-run outcomes to test persistence and spillovers across skill

domains; (ii) study equity by testing if alignment narrows gaps for students who face other educa-

tional barriers; and (iii) assess scalability by embedding the tool in routine workflows of teachers

and schools (text-messages, report cards) at low cost. In general, pairing this framework with

interventions that shift the costs or benefits to skills can help design more effective policies that

build the diverse skillsets children need to thrive.
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A Additional Figures

Figure A.1: Parent-Reported Skill Levels and Behavioral Measures

Emotional Symptoms

Conduct Problems

Hyperactivity

Peer Problems

Prosocial

−4 0 4
Association with skill level (0−100 scale)

Math

Literacy

Science

Selfaware

Perseverance

Empathy

Interpersonal

Teamwork

Leadership

Notes: Coefficients from regressions of parent-reported skill levels (0-100 scale) on standardized Strengths and
Difficulties Questionnaire (SDQ) subscales. Each SDQ subscale is constructed from five survey items and
standardized across parents (mean 0 and standard deviation 1). Higher values on problem subscales (Emotional
Symptoms, Conduct Problems, Hyperactivity, Peer Problems) indicate more difficulties; higher Prosocial scores
indicate more prosocial behavior. Points show coefficient estimates; horizontal lines show 95% confidence intervals.
All coefficients are statistically significant at the 5% level. Sample varies by skill dimension: N=2,015-2,032
students across 242 teachers.
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Figure A.2: Skill Preferences by Family Characteristics
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Number of siblings Birth order Parent education aspiration Parent job aspiration

−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2

Intercept

Only child

1−2 siblings

3+ siblings

Middle child

Youngest child

Graduate Degree

Bachelors

Secondary or less

Doctor

Civil Service

Scientist

Teacher

Mechanical/Engineering

Lawyer

Other Professional

Service Worker

Sports/Arts

Agriculture

Child's Choice

Other

Estimate

C
oe

ffi
ci

en
t dimension

Academic

Emotional

Social

N = 3404 (students)
N = 242 (teachers)

Coefficients from regressing Parent ranking on parent and child demographics

Notes: Coefficients from regressions of skill preference rankings on family characteristics. Skill preference rankings multiplied by -1 so that higher values indicate
greater parental preference for the skill. N=3,404 students, 242 teachers. Points show coefficient estimates; bars show 95% confidence intervals.
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Figure A.3: Average Skill Preference Rank by Skill Level Quintile (All Dimensions)

Notes: Higher values on the y-axis indicate higher parental priority (rank 1 = most important). Points show
quintile means; bars show 95% confidence intervals.
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Figure A.4: Distribution of Within-Student Preference-Level Slopes
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Notes: N = 3,404 students. Histogram shows distribution of within-student preference-level slopes, estimated by
regressing each parent’s skill preference rankings on standardized skill levels. Higher slopes indicate parents prefer
improvement in stronger skills. Vertical dashed line shows mean slope.
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Figure A.5: Teacher Versus Parent Skill Preference Rankings by Skill Dimension

Notes: N = 1,273 students, 242 teachers. Each panel shows the distribution of teachers’ skill preference rankings
for the specified skill dimension overlaid on the parent distribution. Dotted lines show the mean skill preference
rank for each dimension. The x-axis is reversed so that the highest skill preference ranks (most important to
improve) are on the right.
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B Additional Tables

Table B.1: Treatment Effects on Survey Completion (Attrition Analysis)

Dependent Variable: Has Complete Data (1) (2)

Variables
Treated -0.0251 -0.0370

(0.0334) (0.0464)
Top Category: Social -0.0712

(0.0390)
Top Category: Emotional -0.0236

(0.0653)
Treated × Social 0.0323

(0.0699)
Treated × Emotional 0.0388

(0.0831)

Statistics
Observations 1,461 1,461
Adjusted R2 0.189 0.189

Notes: Sample restricted to students observed at either baseline or endline on at least one outcome. The dependent
variable equals 1 if a student has non-missing data for all four key outcomes (rating baseline, rating endline, ranking
baseline, and ranking endline), and 0 otherwise. “Treated” indicates teachers who received information about parent
preferences. All specifications include class fixed effects; standard errors are clustered at the teacher level.

Standard errors in parentheses, clustered at the teacher level

Significance Codes: *** p < 0.01, ** p < 0.05, * p < 0.1
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Table B.2: Descriptive Statistics of Parent Survey Sample

Notes: All numbers are percentages unless noted. Household income in lakhs (100,000 INR); 1 USD ≈ 75 INR.
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Table B.3: Within-Dimension Preference-Level Slopes (by Skill)

Dependent Variable: Skill Preference Rank (1)

Skill Level
Math -0.5180***

(0.0430)
Literacy -0.3775***

(0.0474)
Science -0.1953***

(0.0482)
Self-awareness -0.3239***

(0.0486)
Perseverance -0.1162**

(0.0488)
Empathy -0.3513***

(0.0522)
Interpersonal -0.3239***

(0.0488)
Teamwork -0.3152***

(0.0460)
Leadership -0.3582***

(0.0455)

Observations 29,747
Adjusted R2 0.0455

Notes: Entries report slope coefficients βj (average marginal effects) from −Skill Preference Ranki,j = αj +
βj Skill Leveli,j × Skill dimensionj + ϵi,j . The outcome is the parent’s skill preference rank for improvement (1-9),
multiplied by -1 so that larger numbers indicate greater priority. The dependent variable, Skill Leveli,j is standardized
within-student. Standard errors in parentheses are two-way clustered by student and classroom. Unit of observation:
student-dimension.

Standard errors in parentheses, two-way clustered (student, classroom).

Significance codes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B.4: Balance Table: Parent and Child Characteristics by Treatment Status

Notes: N = 823 parents. Standard deviations in parentheses below means. P-values from t-tests of difference in
means between treatment and control, and a Pearson chi-squared test for categorical variables. Household income
in lakhs (100,000 INR); 1 USD ≈ 75 INR.
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Table B.5: Complier Characteristics

Notes: Standard errors in parentheses. Complier characteristics estimated using 2SLS following Hull (2025).
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Table B.6: Cost and Benefit Demographic Coefficients

Subgroup Equation Median 95% CI Variable

Grade
Grade 2 Academic Preference (beta1) 0.030 [-0.200, 0.270] class coarse2
Grade 3 Academic Preference (beta1) 0.035 [-0.195, 0.265] class coarse3
Grade 4 Academic Preference (beta1) 0.053 [-0.159, 0.260] class coarse4
Grade 5 Academic Preference (beta1) 0.179 [-0.028, 0.382] class coarse5
Grade 6 Academic Preference (beta1) 0.065 [-0.141, 0.277] class coarse6
Grade 7 Academic Preference (beta1) 0.130 [-0.076, 0.340] class coarse7
Grade 8 Academic Preference (beta1) 0.126 [-0.097, 0.344] class coarse8
Grade 9 Academic Preference (beta1) 0.101 [-0.118, 0.324] class coarse9
Grade 10 Academic Preference (beta1) 0.153 [-0.063, 0.360] class coarse10

Household Income
5-10 Lakh INR Academic Preference (beta1) 0.011 [-0.163, 0.181] hh income coarse
10-15 Lakh INR Academic Preference (beta1) 0.022 [-0.140, 0.178] hh income coarse
Over 15 Lakh INR Academic Preference (beta1) 0.002 [-0.140, 0.150] hh income coarse

Mother Education
Secondary (Class XII) Academic Preference (beta1) 0.068 [-0.218, 0.350] mother education coarse
Bachelors Academic Preference (beta1) 0.084 [-0.170, 0.340] mother education coarse
Graduate Degree Academic Preference (beta1) 0.082 [-0.162, 0.329] mother education coarse

Father Education
Secondary (Class XII) Academic Preference (beta1) -0.087 [-0.375, 0.209] father education coarse
Bachelors Academic Preference (beta1) -0.006 [-0.258, 0.249] father education coarse
Graduate Degree Academic Preference (beta1) 0.015 [-0.231, 0.260] father education coarse

Teacher Ranking
Academic Academic Supply (lkA) -0.005 [-0.680, 0.670] ranking
Social Academic Supply (lkA) -0.006 [-0.561, 0.546] ranking
Emotional Academic Supply (lkA) -0.006 [-0.457, 0.445] ranking

Grade (Supply)
Grade 2 Academic Supply (lkA) -0.048 [-0.209, 0.108] class coarse2
Grade 3 Academic Supply (lkA) -0.029 [-0.183, 0.125] class coarse3
Grade 4 Academic Supply (lkA) -0.049 [-0.189, 0.095] class coarse4
Grade 5 Academic Supply (lkA) -0.128 [-0.263, 0.011] class coarse5
Grade 6 Academic Supply (lkA) -0.060 [-0.203, 0.078] class coarse6
Grade 7 Academic Supply (lkA) -0.103 [-0.244, 0.038] class coarse7
Grade 8 Academic Supply (lkA) -0.091 [-0.239, 0.059] class coarse8
Grade 9 Academic Supply (lkA) -0.084 [-0.233, 0.065] class coarse9
Grade 10 Academic Supply (lkA) -0.105 [-0.245, 0.040] class coarse10

Income (Supply)
5-10 Lakh INR Academic Supply (lkA) -0.013 [-0.130, 0.102] hh income coarse
10-15 Lakh INR Academic Supply (lkA) -0.018 [-0.124, 0.091] hh income coarse
Over 15 Lakh INR Academic Supply (lkA) 0.000 [-0.102, 0.096] hh income coarse

Mother Ed. (Supply)
Secondary (Class XII) Academic Supply (lkA) -0.036 [-0.229, 0.157] mother education coarse
Bachelors Academic Supply (lkA) -0.048 [-0.218, 0.125] mother education coarse
Graduate Degree Academic Supply (lkA) -0.046 [-0.214, 0.119] mother education coarse

Father Ed. (Supply)
Secondary (Class XII) Academic Supply (lkA) 0.049 [-0.152, 0.241] father education coarse
Bachelors Academic Supply (lkA) -0.003 [-0.177, 0.167] father education coarse
Graduate Degree Academic Supply (lkA) -0.017 [-0.182, 0.151] father education coarse

Siblings
1 sibling Academic Supply (lkA) -0.003 [-0.015, 0.010] siblings cat
2+ siblings Academic Supply (lkA) 0.005 [-0.016, 0.027] siblings cat

Notes: Each row shows the posterior median and 95% credible interval for coefficients from the hierarchical model.
Academic Preference (beta1) refers to family preferences for academic skill development; Academic Supply (lkA)
refers to teacher supply of academic instruction.
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Table B.7: Variance Ratio by Demographic Subgroups

Subgroup N Median Ratio 95% CI P(Costs > Benefits)
By Grade (omitted: Grade 1)

Grade 2 132 1.43 [0.92, 2.81] 0.942
Grade 3 145 1.50 [0.92, 3.00] 0.948
Grade 4 221 1.44 [0.91, 2.78] 0.945
Grade 5 230 1.45 [0.94, 2.75] 0.953
Grade 6 207 1.45 [0.92, 2.91] 0.946
Grade 7 216 1.51 [0.92, 3.07] 0.951
Grade 8 163 1.46 [0.90, 2.90] 0.942
Grade 9 184 1.45 [0.93, 2.90] 0.948
Grade 10 209 1.44 [0.93, 2.80] 0.949

By Household Income (omitted: 0–5 Lakh)
5–10 Lakh 303 1.22 [0.93, 1.73] 0.934
10–15 Lakh 425 1.22 [0.94, 1.74] 0.933
Over 15 Lakh 779 1.28 [0.93, 1.91] 0.942

By Mother’s Education (omitted: Less than Secondary)
Secondary (Class XII) 146 1.19 [0.91, 1.70] 0.895
Bachelor’s 500 1.25 [0.94, 1.78] 0.942
Graduate Degree 1131 1.26 [0.94, 1.80] 0.945

By Father’s Education (omitted: Less than Secondary)
Secondary (Class XII) 134 1.18 [0.90, 1.73] 0.876
Bachelor’s 571 1.24 [0.94, 1.77] 0.942
Graduate Degree 1074 1.28 [0.95, 1.85] 0.949

Notes: Each row shows the posterior median, 95% credible interval, and probability mass above 1 for
Var[log λ]/Var[log T ] within the indicated subgroup.
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C Survey Instruments

C.1 Parent Survey

C.1.1 Demographic Questions

The parent survey collected the following demographic information:

Family Structure and Composition

• Relation to child (father, mother, both parents, other)

• Child’s gender and age

• Mother’s and father’s age

• Number of siblings and birth order

• Primary caregiver(s) for the child

Socioeconomic Status

• Marital status (married, unmarried, widowed, separated/divorced, married with spouse ab-

sent)

• Mother’s occupation (professional, clerical, sales, service, agricultural, craftsmen, mechanical,

homemaker, self-employed)

• Father’s occupation (same categories as mother)

• Annual household income (seven brackets from Rs 0–2.5 lakh to over Rs 15 lakh)

• Mother’s highest level of education (none to doctorate)

• Father’s highest level of education (none to doctorate)

Educational Aspirations and School Engagement

• Highest level of education parents would ideally like their child to attain

• Occupational aspirations for when their child is 30 years old (14 categories including business

owner/manager, lawyer, scientist, doctor, teacher, civil service, etc.)

• Frequency of contact with child’s class teacher or school staff (5-point scale from “rarely” to

“very frequently”)

• Satisfaction with quality of education child is receiving (4-point scale)

• Satisfaction with child’s school progress in general (4-point scale)

Well-being

• Life satisfaction (Cantril ladder: 0–10 scale where 0 is worst possible life and 10 is best

possible life)

• Strengths and Difficulties Questionnaire (SDQ): 25 behavioral items rated as “Not True,”

“Somewhat True,” or “Certainly True”

65



C.1.2 Skill Assessment Questions

The core skill assessment consisted of two parts, shown in Figure C.6. The survey focused on nine

skills across three categories:

• Academic skills: Literacy skills, Mathematical skills, Scientific literacy

• Social skills: Collaboration and teamwork skills, Interpersonal skills, Leadership and initia-

tive

• Emotional skills: Perseverance and growth mindset, Emotional self-awareness and regula-

tion, Empathy for others

Ratings (Skill Levels) Parents rated their child’s current ability on each of the nine skills using

a 0–100 scale, where 0 represents the “lowest level possible” and 100 represents the “highest level

possible.” Parents were instructed not to use 100 unless they believed their child could not improve

on that skill at all. An example was provided showing a parent rating their child’s physical fitness

as 76 to demonstrate the task.

Rankings (Skill Preferences) Parents ranked skills by importance for improvement in two

ways:

1. Category ranking: Parents ranked the three broad categories (Academic, Social, Emo-

tional) from 1 (most important to improve) to 3 (least important to improve). After complet-

ing the ranking, parents reported their confidence in the ranking (not confident, somewhat

confident, very confident, extremely confident).

2. Skill ranking: Parents ranked all nine skills from 1 (most important to improve) to 9 (least

important to improve). After completing the ranking, parents again reported their confidence

in the ranking.

Instructions emphasized that rankings should reflect which improvements would most benefit

the child’s quality of life, assuming all skills are equally difficult to improve.

C.2 Teacher Survey

The teacher survey was administered online at baseline and endline using Qualtrics. The survey

collected information about teachers’ professional backgrounds, pedagogical philosophies, and skill

preferences for different types of students. The skill preference questions parallel the parent rankings

but were asked for three different contexts:

C.2.1 Teacher Skill Preferences

(i) Typical Student Rankings Teachers ranked skill improvement priorities for a typical stu-

dent in their class:
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Figure C.6: Parent Survey: Skill Levels and Skill Preferences

Ratings (*)

In the remaining part of this survey, we will focus on the 9 skills shown below.

First we will ask you rating questions. Ratings tell us about your child's current abilities. Think about your child over the last year.
Please rate each skill from 0 to 100, where 0 is the "lowest level possible" and 100 is the "highest level possible". Do not use 100
unless you think your child cannot improve on this skill at all.
To demonstrate, here is an example of a parent rating their child's physical fitness as 76.

At present, how would you rate your child's...

Literacy skills fill fill fill

Mathematical skills fill fill fill

Scientific literacy fill fill fill

Collaboration and teamwork skills fill fill fill

Interpersonal skills fill fill fill

Leadership and initiative fill fill fill

Perseverance and growth mindset fill fill fill

Emotional self-awareness and regulation fill fill fill

Empathy for others fill fill fill

ENGLISH_1 PAE6 0004

To respond or

Rankings (*)
Rankings tell us about the importance of improving each skill and category. Think about the skills you just rated. Starting from
this point,which skills are the most important to improve for your child? Here is an example of what a ranking looks like.

Imagine filling the table out column by column. For example, in the first column, this parent has ranked "Social skills" as the most
important to improve. In the last column, they have selected "Emotional skills" as the least important to improve.
Consider the three categories. Which is most important to improve? Please select one category per column.

SELECT ONE PER COLUMN
1

(most important) 2 3
(least important)

Academic skills

Social skills

Emotional skills

How confident are you in this ranking? (Please cross one)

Not confident Somewhat confident Very confident Extremely confident

Now consider the nine skills. Which is most important to improve? Please select one skill per column.

SELECT ONE PER COLUMN
1

(most important) 2 3 4 5 6 7 8 9
(least important)

Literacy skills

Mathematical skills

Scientific literacy

Collaboration and teamwork skills

Interpersonal skills

Leadership and initiative

Perseverance and growth mindset

Emotional self-awareness and regulation

Empathy for others

How confident are you in this ranking? (Please cross one)

Not confident Somewhat confident Very confident Extremely confident

ENGLISH_1 PAE6 0005

To respond or

Notes: Pages 4 and 5 of the parent survey instrument showing the skill levels and skill preferences sections. The
skill levels section asks parents to rate their child’s current ability on each of nine skills from 0–100. The skill
preferences section asks parents to rank skills by importance for improvement, first at the category level (3
categories) and then at the individual skill level (9 skills).

• Category ranking: “First, consider the three broad categories for a typical student in your

class. Think about improvements for each category. In general, which improvement would

benefit a student’s quality of life the most? Drag the categories to order them from 1 (most

benefit) to 3 (least benefit). Note: Don’t consider how difficult it is to improve each category.

Assume they are all equally difficult.”

• Skill ranking: “Now consider the nine skills. Again, think about improvements in each skill.

Which improvement would benefit the typical student the most? Drag the skills to order them

from 1 (most benefit) to 9 (least benefit). Note: Again, assume they are all equally difficult

to improve. The order will always be randomized to start. You can hover over the skills for

their description.”

(ii) Individual Student Rankings For six randomly selected students in their class, teachers

ranked skill improvement priorities based on their own pedagogical priorities:

• Category ranking: “Think about improving [Student Name]’s current abilities. Which
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category is most important to improve, based on your priorities as their teacher?” Teachers

ranked the three categories from 1 (most important) to 3 (least important).

• Skill ranking: Teachers then ranked all nine skills for the same student from 1 (most

important) to 9 (least important).

(iii) Beliefs About Parent Rankings For the same six students, teachers reported their beliefs

about how each student’s parent would rank skill priorities:

• Category ranking: “Imagine you are having a discussion with the parent of [Student Name].

How do you think their parent would rank the following categories in terms of which improve-

ment would benefit their child the most?” Teachers ranked the three categories from their

perspective of parent priorities.

• Skill ranking: Teachers ranked all nine skills from their perspective of what the parent

would prioritize.

This three-way comparison allows us to measure: (a) alignment between teacher and parent

priorities, (b) teachers’ awareness of parent preferences, and (c) whether teachers adjust their

rankings when considering individual students versus a typical student.

C.3 Pedagogical Strategies

Teachers were asked about their familiarity with and use of 24 specific pedagogical strategies de-

signed to build the six socioemotional skills. Table C.8 lists all strategies by skill domain. At

baseline, for each skill, teachers were asked to rank the four strategies based on which they thought

would be most effective. At endline, teachers were asked about their use of pedagogical strategies.

Table C.8 lists all strategies by skill domain.
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Table C.8: Pedagogical Strategies for Socioemotional Skill Development

Skill Domain Strategies

Collaboration and Teamwork • Jigsaw Technique
• Think-Pair-Share
• Numbered Heads Together
• Project-Based Learning

Interpersonal Skills • Role-Playing Exercises
• Service-Learning Projects
• Classroom Circles
• Think-Pair-Share

Leadership and Initiative • Rotating Class Leaders
• Shared Leadership
• Project-Based Learning
• Encouraging Participation in Extracurricular Activities

Perseverance and Growth Mindset • Setting and Reflecting on Learning Goals
• Structured Reflection on Setbacks and Failures
• Modeling Personal Growth Stories
• Promoting Growth in the Classroom

Emotional Self-Awareness & Regulation • Mindfulness and Meditation Practices
• Journaling and Reflective Writing
• Emotional Modeling and Feedback
• Implementing Cognitive Behavioral Techniques

Empathy for Others • Buddy Programs
• Exploring and Reflecting on Diverse Literature and Me-

dia
• Empathy Circles and Role-Playing
• Community Service and Volunteering

Notes: The 24 pedagogical strategies shown to teachers at baseline and endline. At baseline, teachers ranked the
strategies within each skill domain based on perceived effectiveness. At endline, teachers reported their use of these
strategies in the classroom.
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D Model Derivations

D.1 Environment and CET technology

Outcomes and notation. Each child exits the grade with a two-dimensional skill vector c =

(c1, c2) ∈ R2
+, where c1 denotes academic/cognitive skill and c2 denotes non–cognitive skill.

Preferences and the MRS. Parent i has Cobb–Douglas utility

U(c1, c2;βi) = cβi
1 c 1−βi

2 , 0 < βi < 1.

The marginal utilities are

MU1 =
∂U

∂c1
= βi c

βi−1
1 c 1−βi

2 , MU2 =
∂U

∂c2
= (1− βi) c

βi
1 c−βi

2 .

The marginal rate of substitution of skill 2 for skill 1 (the amount of c2 the parent requires to

compensate a one–unit loss of c1 while holding utility constant) is

MRS12,i =
MU1

MU2
=

βi
1− βi

c2
c1
. (D.14)

It will be convenient below to define the taste index

Ti :=
(

βi

1−βi

)1/ρ
⇐⇒ log Ti =

1
ρ log

(
βi

1−βi

)
,

where ρ > 1 will be the curvature parameter of the technology.

Technology and the CET frontier. Let parents purchase inputs e1, e2 at prices p1, p2 subject

to a static budget p1e1 + p2e2 ≤ I. Each skill is produced with diminishing marginal product from

its own input:

c1 = a1e
θ
1, c2 = a2e

θ
2, aj > 0, 0 < θ < 1.

Eliminating inputs using ej = (cj/aj)
1/θ and substituting into the budget gives

p1

(
c1
a1

)1/θ
+ p2

(
c2
a2

)1/θ
≤ I.

Let ρ := 1/θ > 1 and define the effective productivity-price constants

κ1 := a1

(
I
p1

)1/ρ
, κ2 := a2

(
I
p2

)1/ρ
. (D.15)

Dividing both sides by I1/ρ and rearranging yields the constant-elasticity-of-transformation (CET)

frontier: (
c1
κ1

)ρ
+

(
c2
κ2

)ρ
= 1, ρ > 1, κ1, κ2 > 0. (D.16)

70



We collect relative technology/price/budget information in the tilt (relative supply parameter)

λ :=
κ1
κ2

> 0, (D.17)

so that larger λ means skill 1 is relatively easier to produce (or relatively cheaper per efficiency

unit), tilting the PPF toward c1.

The MRT along the CET. Let F (c1, c2) := (c1/κ1)
ρ + (c2/κ2)

ρ − 1 = 0 define the frontier

(D.16). By definition, the MRT is the ratio of marginal costs (the absolute slope of the frontier).

Totally differentiating gives

Fc1 dc1 + Fc2 dc2 = 0 =⇒ dc2
dc1

= −Fc1

Fc2

.

Compute the partial derivatives:

Fc1 = ρ κ−ρ
1 cρ−1

1 , Fc2 = ρ κ−ρ
2 cρ−1

2 .

Hence the (absolute) marginal rate of transformation between the two skills is

MRT12 := −dc2
dc1

=
(
κ2
κ1

)ρ(
c1
c2

)ρ−1
= λ−ρ sρ−1, s :=

c1
c2
. (D.18)

Expression (D.18) shows how the frontier’s marginal tradeoff depends both on curvature ρ and on

the tilt λ: for a given skill ratio s, a higher λ (skill 1 relatively easier) rotates the PPF, lowering

the amount of c2 that must be sacrificed per unit increase in c1 (a smaller MRT). The associated

elasticity of transformation for the CET is σT = 1/(ρ− 1) ∈ (0,∞).

D.2 Optimal skill ratio

Equating the MRS (D.14) and the MRT (D.18) yields the optimal skill ratio

s∗ :=
c1
c2

=
(

β
1−β

)1/ρκ1
κ2

= T λ, T :=
(

β
1−β

)1/ρ
. (D.19)

Evaluated at (c∗1, c
∗
2), the MRS equals

MRS∗12 = T ρ−1λ−1. (D.20)

Multiplying gives the identity

s∗ ·MRS∗12 = T ρ. (D.21)
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D.3 Within-dimension dispersion across students

Covariance formula. Let (Ti, λi) vary across students. Then (dropping the subscript i for

convenience),

Cov(s∗,MRS∗) = E[T ρ]− E[Tλ]E[T ρ−1λ−1]. (D.22)

Pure supply heterogeneity. If β is constant (T ≡ T̄ ), then

Cov(s∗,MRS∗) = T̄ ρ
(
1− E[λ]E[λ−1]

)
< 0, (D.23)

as by the Cauchy-Schwarz inequality, we have E[λ]E[λ−1] > E[
√
λ ∗

√
λ−1] = 1.

Pure preference heterogeneity. If λ is constant, write t := β/(1− β) > 0 and note T = t1/ρ.

Then

Cov(s∗,MRS∗) = E[t]− E[t1/ρ]E[t1−1/ρ] > 0, (D.24)

as by Jensen’s inequality, we have that E[t1/ρ] < E[t]1/ρ and E[t1−1/ρ] < E[t]1−1/ρ (note 0 < 1/ρ < 1

and 0 < 1− 1/ρ), so their product is less than E[t].

Reduced–form slope and variance comparison. Recall from (D.14)–(D.18) that the observed

skill ratio and MRS are

s∗ = T λ, MRS∗ = T ρ−1λ−1,

where T =
( β
1−β

)1/ρ
captures preferences and λ = κ1/κ2 is the relative supply tilt. Across students,

the reduced–form slope from regressing MRS∗ on s∗ is

βRF =
Cov(s∗,MRS∗)

Var(s∗)
. (D.25)

Exact formula. Let µab := E[T aλb] denote mixed moments of the taste and technology param-

eters. From (D.25) we have that

βRF =
µρ,0 − µ1,1 µρ−1,−1

µ2,2 − µ2
1,1

. (D.26)

This expression is fully general.

D.3.1 Log-linearized approximate variance decomposition.

Reduced–form slope in levels (first–order derivation). Recall

s∗ = T λ and MRS∗ = T ρ−1 λ−1,
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where T :=
(

β
1−β

)1/ρ
is the benefits tilt and λ := κ1

κ2
is the costs tilt. Let T̄ := E[T ], λ̄ := E[λ], and

write small mean–zero fractional deviations

T̃ :=
T − T̄

T̄
, λ̃ :=

λ− λ̄

λ̄
, E[T̃ ] = E[λ̃] = 0.

Then T = T̄ (1 + T̃ ) and λ = λ̄(1 + λ̃). A first–order expansion gives

s∗ = T λ ≈ T̄ λ̄ (1 + T̃ + λ̃),

MRS∗ = T ρ−1λ−1 ≈ T̄ ρ−1λ̄−1
(
1 + (ρ− 1)T̃ − λ̃

)
.

Centering by subtracting means (which differ from the above only by constants), the first-order

fluctuations are

ŝ ≈ T̄ λ̄ (T̃ + λ̃), m̂ ≈ T̄ ρ−1λ̄−1
(
(ρ− 1)T̃ − λ̃

)
,

where ŝ := s∗ − E[s∗] and m̂ := MRS∗ − E[MRS∗].

Assuming (for expositional clarity) that T̃ and λ̃ are approximately uncorrelated,10 we obtain

Cov(m̂, ŝ) ≈ T̄ ρ
(
(ρ− 1)Var(T̃ ) − Var(λ̃)

)
,

Var(ŝ) ≈ (T̄ λ̄)2
(
Var(T̃ ) + Var(λ̃)

)
.

Hence, the reduced–form OLS slope of MRS∗ on s∗ is

βRF =
Cov(m̂, ŝ)

Var(ŝ)
≈ T̄ ρ−2 λ̄−2︸ ︷︷ ︸

units factor

·(ρ− 1)Var(T̃ ) − Var(λ̃)

Var(T̃ ) + Var(λ̃)
.

The prefactor T̄ ρ−2λ̄−2 is a units normalization. It rescales the dependent variable by a positive

constant and does not affect the sign comparison. If we report the slope in normalized units (divide

MRS∗ by T̄ ρ−1λ̄−1 and s∗ by T̄ λ̄), this prefactor is 1 and we get the variance–ratio form used in

the main text:

βRF ≈ (ρ− 1)Var(T̃ ) − Var(λ̃)

Var(T̃ ) + Var(λ̃)
(D.27)

where T̃ and λ̃ are fractional (mean–normalized) deviations of the tilts. Relating tilts to primitives,

T = exp(b/ρ) with b = log β
1−β and λ̃ corresponds to k̃ = log λ − E[log λ]; for small dispersion,

Var(T̃ ) ≈ 1
ρ2
Var(b̃) and Var(λ̃) ≈ Var(k̃), matching the appendix formulas.

We reparametrize the optimal skill ratio and MRS as:

s∗ = T λ = exp
(
1
ρb+ k

)
, MRS∗ = T ρ−1λ−1 = exp

(
ρ−1
ρ b− k

)
,

10When Cov(T̃ , λ̃) ̸= 0, the same steps yield a simple adjustment term; see above for the general formula.
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where b = log β
1−β and k = log λ. Define the linear indices

x := 1
ρb+ k, y := ρ−1

ρ b− k,

so that s∗ = ex and MRS∗ = ey.

Write b = b̄+b̃ and k = k̄+k̃, with E[b̃] = E[k̃] = 0, σ2
b := Var(b̃), σ2

k := Var(k̃), σbk := Cov(b̃, k̃).

Then

x = x̄+Ab̃+Bk̃, y = ȳ + Cb̃+Dk̃,

with coefficients

A = 1
ρ , B = 1, C = ρ−1

ρ , D = −1,

and means x̄ = b̄
ρ + k̄, ȳ = ρ−1

ρ b̄− k̄.

Second–order expansion. Using the second–order Taylor approximation eu ≈ 1 + u+ 1
2u

2 for

small, centered u,

ex = ex̄ eAb̃+Bk̃ ≈ ex̄
[
1 + (Ab̃+Bk̃) + 1

2(Ab̃+Bk̃)2
]
,

ey = eȳ eCb̃+Dk̃ ≈ eȳ
[
1 + (Cb̃+Dk̃) + 1

2(Cb̃+Dk̃)2
]
.

Therefore the means are given as

E[ex] ≈ ex̄
[
1 + 1

2

(
A2σ2

b + 2AB σbk +B2σ2
k

)]
,

E[ey] ≈ eȳ
[
1 + 1

2

(
C2σ2

b + 2CDσbk +D2σ2
k

)]
.

For the variance, we use the first–order approximation

Var(ex) ≈ e2x̄Var(Ab̃+Bk̃) = e2x̄
(
A2σ2

b + 2AB σbk +B2σ2
k

)
.

Var(ey) ≈ e2ȳ Var(Cb̃+Dk̃) = e2ȳ
(
C2σ2

b + 2CDσbk +D2σ2
k

)
.

The covariance is

Cov(ey, ex) ≈ ex̄+ȳ Cov(Ab̃+Bk̃, Cb̃+Dk̃)

= ex̄+ȳ
(
AC σ2

b + (AD +BC)σbk +BDσ2
k

)
.

Assembling the ratio. Recall the reduced–form slope is

βRF =
Cov(ey, ex)

Var(ex)
.
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Thus,

βRF ≈ eȳ−x̄ AC σ2
b + (AD +BC)σbk +BDσ2

k

A2 σ2
b + 2AB σbk +B2 σ2

k

.

Substituting A,B,C,D:

AC = ρ−1
ρ2

, AD +BC =
ρ− 2

ρ
, BD = −1,

A2 = 1
ρ2
, 2AB = 2/ρ, B2 = 1.

Hence

βRF ≈ eȳ−x̄

ρ−1
ρ2

σ2
b − σ2

k +
ρ−2
ρ σbk

1
ρ2

σ2
b + σ2

k + 2
ρ σbk

. (D.28)

Simplifications.

(i) The constant factor eȳ−x̄ reflects a units normalization of the dependent variable in the

reduced–form regression; rescaling MRS∗ by a positive constant rescales the slope by the

same constant, so this term can be set to 1 without loss of generality.

(ii) If b̃ and k̃ are approximately uncorrelated (σbk ≈ 0), then

this becomes the compact variance–comparison formula

βRF ≈
ρ−1
ρ2

σ2
b − σ2

k

1
ρ2

σ2
b + σ2

k

(D.29)

which matches the presentation in the main text.

Equation (D.29) shows that the sign and magnitude of the reduced–form slope are governed by

the relative dispersion of benefits and costs.

D.4 Within-student dispersion across skills

We observe J ≥ 3 skills for the same parent. Let the CET frontier be

J∑
j=1

(
cj
κj

)ρ
= 1, ρ > 1,

and preferences U(c;β) =
∏J

j=1 c
βj

j with βj > 0 and
∑

j βj = 1. Fix skill 1 as an anchor. For each

j ̸= 1, define the pairwise skill ratio and MRS :

s∗j :=
c∗j
c∗1

=
(βj
β1

)1/ρκj
κ1

=: Tj λj , MRS∗j1 = T ρ−1
j λ−1

j ,

where Tj :=
(
βj/β1

)1/ρ
and λj := κj/κ1 are the within–parent benefit and cost tilts, respectively.
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Key identity (within-parent). As in the two–skill case, technology cancels when we multiply:

s∗j ·MRS∗1j =
βj
β1

= ebj , bj := log
(βj
β1

)
. (D.30)

Exact covariance expression. Let expectations and variances be taken across the J−1 non–anchor

skills for this parent (denote them by Ej [·], Varj(·), etc.). Using (D.30) and the definitions above,

Covj(s
∗,MRS∗) = Ej

[
s∗jMRS∗1j

]
− Ej [s

∗
j ] Ej [MRS∗1j ]

= Ej

[
ebj

]
− Ej

[
e

1
ρ
bj+kj

]
Ej

[
e

ρ−1
ρ

bj−kj
]
, (D.31)

where kj := log λj = log(κj/κ1).

Second–order approximation (small dispersion across skills). Write bj = b̄+ b̃j and kj =

k̄ + k̃j with within–parent means b̄, k̄ and centered shocks Ej [b̃j ] = Ej [k̃j ] = 0. Define

σ2
b := Varj(b̃), σ2

k := Varj(k̃), σbk := Covj(b̃, k̃).

As in the cross-section derivation, set

xj :=
1
ρbj + kj , yj :=

ρ−1
ρ bj − kj , ⇒ s∗j = exj , MRS∗1j = eyj .

With coefficients A = 1
ρ , B = 1, C = ρ−1

ρ , D = −1, a second–order expansion in (b̃, k̃) yields (cf.

the general formula in the previous subsection)

Covj(s
∗,MRS∗) ≈ ex̄+ȳ

(
AC σ2

b + (AD +BC)σbk +BDσ2
k

)
= ex̄+ȳ

(
ρ− 1

ρ2
σ2
b +

ρ− 2

ρ
σbk − σ2

k

)
, (D.32)

where x̄ = b̄
ρ + k̄ and ȳ = ρ−1

ρ b̄− k̄.

Within-parent reduced-form slope. The within-parent OLS slope from regressing MRS∗1j on

s∗j across the J − 1 pairs is

βRF
within =

Covj(s
∗,MRS∗)

Varj(s∗)
.

Using the same expansion,

Varj(s
∗) ≈ e2x̄

(
A2σ2

b + 2AB σbk +B2σ2
k

)
= e2x̄

(
1

ρ2
σ2
b +

2

ρ
σbk + σ2

k

)
.

Thus,

βRF
within ≈ eȳ−x̄

ρ−1
ρ2

σ2
b − σ2

k + ρ−2
ρ σbk

1
ρ2

σ2
b + σ2

k + 2
ρ σbk

. (D.33)
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As before, the level constant eȳ−x̄ is a units normalization and can be absorbed by rescaling the

dependent variable.

Interpretation. Equation (D.32) (or (D.33)) shows that, within a parent, dispersion in tastes

across skills (σ2
b ) pushes the covariance/slope positive, while dispersion in technology tilts across

skills (σ2
k) pushes it negative; the cross–covariance σbk enters with coefficient (ρ−2)/ρ and vanishes

in the special case ρ = 2. Under approximate orthogonality of tastes and tilts across skills (σbk ≈ 0),

the sign reduces to a simple variance comparison:

Covj(s
∗,MRS∗) ≷ 0 ⇐⇒ ρ− 1

ρ2
Varj(b̃) ≷ Varj(k̃).

Empirically, this justifies running the within-parent regression of ranks on demeaned skill levels

across skills (with an anchor), and interpreting the sign/magnitude as a diagnostic of whether

the child’s skill profile mirrors parental priorities (taste dispersion) or comparative advantage in

production (supply dispersion).

D.5 Policy intervention: local analysis

Optimal local policy direction. Let u(c1, c2) = cβ1 c
1−β
2 and feasible (c1, c2) be summarized

locally by instruments z = (lnκ1, lnκ2) with dc = H dz, H = diag(c1, c2). The policymaker solves

max
dz

∇u⊤H dz s.t. 1
2dz

⊤Wdz ≤ C.

The Lagrangian yields Wdz = λH⊤∇u, hence dz ∝ W−1H⊤∇u and dc = Hdz ∝ M∇u, M :=

HW−1H⊤ ≻ 0. Under skill-symmetric costs in outcome space (M ∝ I), dc ∝ ∇u, i.e., along the

IC normal.

Budget expansion leaves s unchanged. With CET frontier (c1/κ1)
ρ + (c2/κ2)

ρ ≤ 1 and

Cobb–Douglas, the optimal levels are c∗1 = κ1β
1/ρ and c∗2 = κ2(1− β)1/ρ, so

s :=
c1
c2

=
κ1
κ2

( β

1− β

)1/ρ
.

Since κi = ai(I/pi)
1/ρ, a pure I increase scales both ci by I1/ρ and leaves s unchanged: ds/dI = 0

and dMRS/dI = 0.

Total-differential derivation for the IC-normal step. Define r := c2
c1

and let the policymaker

induce an outcome step along the IC normal (utility gradient). For Cobb–Douglas,

∇u ∝
( β

c1
,
1− β

c2

)
, ∆c1 = κ

β

c1
, ∆c2 = κ

1− β

c2
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for a small step size κ > 0. Using r(c1, c2) = c2/c1,

∂r

∂c1
= −c2

c21
= − r

c1
,

∂r

∂c2
=

1

c1
.

Hence the first-order change is

dr ≈ ∂r

∂c1
∆c1 +

∂r

∂c2
∆c2 = − r

c1

(
κ
β

c1

)
+

1

c1

(
κ
1− β

c2

)
=

κ

c21

(1− β

r
− βr

)
.

Thus the sign of dr matches 1−β
r − βr, which is positive if r <

√
1−β
β , negative if r >

√
1−β
β , and

zero at r† =
√

1−β
β .

Dynamics and convergence to the threshold. Treat repeated tiny IC-normal steps as a

continuous-time limit. Write r = c2/c1 and s = 1/r. From A.3,

dr

dτ
= K

(1− β

r
− βr

)
with K > 0.

Then s = r−1 satisfies

ds

dτ
= − 1

r2
dr

dτ
= K

(
β s− (1− β) s3

)
∝ β

s
− (1− β)s.

The unique positive fixed point is s† =
√

β
1−β . Linearization shows global (monotone for small

steps) convergence toward s†.

Equilibrium κ-ratio implementing the fixed point. At the optimum under CET, s = λT

with λ := κ1/κ2 and T := (β/(1− β))1/ρ. To implement s† as the new optimum, choose

λ⋆ =
s†

T
=

(
β

1−β

) 1
2
− 1

ρ
.

Connection to endogenous technology choice/frontiers. In the framework of Caselli and

Coleman (2006), firms pick (As, Au) on a frontier characterized by a “height” B and curvature;

the first-order conditions link the chosen bias As/Au to factor ratios and relative wages, generat-

ing appropriate technology choices across endowments and a barrier parameter shifting the whole

frontier.11 Our quadratic budget on dz is a local reduced form of these frontier trade-offs for policy.

The distinction is that we treat κi as policy levers, responding to student-specific values captured

by βi. In the the objective is fixed: maximize profit. The choice is for optimal technology in

response to varying prices of labor inputs.

11See Caselli and Coleman (2006) for the frontier concept and the way the FOCs pin down the choice of production
frontier.
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D.6 Teacher-driven supply and key identity

A teacher enters after parents form preferences βi over skills. The teacher chooses effort, peda-

gogy, and materials to determine λi; these may be shifted by observable shocks (e.g., randomized

information, measured teacher priorities). Parents observe learning under this supply and report

endline skill levels and skill preferences; thus reports lie on the PPF determined by λi and Bi.

From (D.19)–(D.20):

s∗i = Tiλi, MRS∗12,i = T ρ−1
i λ−1

i ,

so

s∗i ·MRS∗12,i = T ρ
i . (D.34)

Hence supply dispersion Var(log λ) attenuates the covariance of (s∗,MRS∗) relative to the Period 1

benchmark if treatment reduces misalignment between λi and Ti (e.g., reallocating classroom effort

toward parent-valued skills) rotates the reduced-form slope upwards.

D.7 Empirical implementation and identification

Proxies. Let rij ∈ [0, 100] and mij ∈ {1, . . . , 9} denote parent i’s rating and importance rank for

skill j. Set r̃ij := rij − r̄i. Assume a monotone reporting function so that r̃ij is a monotone proxy

for s∗ij . Parents rank by marginal utility, so mij is a monotone proxy for MRS∗ij .

Baseline regression. Estimate

mij = α+ β r̃ij + ξj + εij , (D.35)

with heteroskedasticity-robust SEs and parent clustering when stacking skills; include dimension

fixed effects ξj and, if desired, dimension-specific slopes.

Supply-side instruments. Treat teacher/classroom variables as supply instruments for r̃ij :

• randomized information assignment at grade/teacher level;

• teacher “typical student” priorities (constructed indices);

• class-level aggregates of parent priorities (leave-one-out).

These shift λi but not βi, identifying the supply-driven component of the slope. Over identified

designs allow over-ID tests; report partial-F (or Bayesian analogs) and cluster at the classroom (or

school×grade) level.

Policy mapping. Posterior (or sampling) decompositions of Var(b) and Var(k) quantify whether

skills are primarily shaped by benefits or costs. If the latter dominates, cost-side levers (pedagogy,

time allocation, materials, class size, resources) should be prioritized; if the former dominates,

alignment and benefit-side interventions are the natural lever.
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E From the 2-Skill Framework to a 3-Category Estimable Model

This section shows, step by step, how the two–skill model (3.1) generalizes to three skill groups

(academic, social, emotional), how the optimal skill ratios are derived, and how every term that

appears in the Stan likelihood is obtained directly from the economic primitives.

E.1 Environment

Skills (now 3 categories). Parents end the decision period with category–level skills c =

(cA, cS , cE) ∈ R3
+.

Preference parameters. Two taste weights govern trade-offs:

U(cA, cS , cE) = cβ1

A

(
cβ2

S c1−β2

E

)1−β1 , β1, β2 ∈ (0, 1). (E.36)

• β1: academic vs. non–academic
(
cβ2

S c1−β2

E

)
;

• β2: social vs. emotional within the non-academic composite.

E.2 Marginal-rate-of-substitution (MRS) between Academic and Non-academic

skills

Utility with nested Cobb–Douglas preferences.

U(cA, cS , cE) = cβ1

A

(
cβ2

S c1−β2

E

)1−β1 , β1, β2 ∈ (0, 1). (D.1)

Collapse Social and Emotional into a single non-academic index. Fix the within–non-

academic mix sSE = cS/cE (chosen optimally in the inner problem). Because sSE is constant during

the Academic vs Non-academic trade-off, the term in brackets is proportional to cN := cS + cE ;

the proportionality factor does not affect marginal rates. Hence we can write the outer utility as

U(cA, cN ) = cβ1

A c 1−β1

N (E.37)

Marginal utilities.

∂U

∂cA
= β1 c

β1−1
A c1−β1

N = β1
U

cA
,

∂U

∂cN
= (1− β1) c

β1

A c−β1

N = (1− β1)
U

cN
.

MRS between Academic and Non-academic.

MRSA,N =
β1

1− β1

cN
cA

=
β1

1− β1

1

sA
, sA :=

cA
cN

(E.38)
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Equation (E.38) is the expression equated to the MRT in Section E.3 to solve for the optimal

Academic share s∗A.

Technology. Each category continues to have its own one–input Cobb–Douglas line: cj =

aje
θ
j (0 < θ < 1). Combining them with the linear budget p1e1 + p2e2 + p3e3 ≤ I again yields a

constant–elasticity–of–transformation (CET) frontier

(
cA/κA

)ρ
+
(
cS/κS

)ρ
+
(
cE/κE

)ρ
= 1, ρ = 1

θ > 1.

Only the two ratios ℓ1 = log(κA/κS) and ℓ2 = log(κS/κE) matter for the frontier’s shape (its

absolute scale is absorbed by the budget).

E.3 MRT between Academic and Non-Academic

We start from the three-category constant-elasticity-of-transformation (CET) frontier with ρ > 1:

(
cA
κA

)ρ
+
(

cS
κS

)ρ
+
(

cE
κE

)ρ
= 1 (E.39)

Collapse cS and cE into a single non-academic quantity while holding their mix con-

stant. Fix a within-non-academic ratio

sSE :=
cS
cE

(taken as given during marginal changes).

Write

cS =
sSE

1 + sSE
cN , cE =

1

1 + sSE
cN , where cN := cS + cE .

Insert these into (E.39); all terms containing cN share the factor cρN . Collect them:

(
cA
κA

)ρ
+
(

cN
κN

)ρ
= 1 (E.40)

with the effective non-academic conversion factor

κN (sSE) = (1 + sSE)

(
sρSE
κρS

+
1

κρE

)−1/ρ

(E.41)

Thus for every fixed sSE the three–point frontier is algebraically equivalent to the two-point

frontier (cA, cN ) with parameters (κA, κN ).

Implicit differentiation: MRTA,N . Let

F (cA, cN ) =
(

cA
κA

)ρ
+
(

cN
κN

)ρ
− 1 = 0.

Total-differentiating while holding sSE (and therefore κN ) constant:
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∂F

∂cA
dcA +

∂F

∂cN
dcN = 0,

∂F

∂cA
= ρ

(
cA
κA

)ρ−1 1

κA
,

∂F

∂cN
= ρ

(
cN
κN

)ρ−1 1

κN
.

Hence the absolute slope is

∣∣MRTA,N

∣∣ = dcN
dcA

=
(
κN (sSE)

κA

)ρ(
cA
cN

)ρ−1
(E.42)

E.3.1 Optimal Academic-vs-Non-academic mix.

Recall that our preferences across categories give

MRSA,N =
β1

1− β1

cN
cA

.

Set MRSA,N =
∣∣MRTA,N

∣∣ and define sA := cA/cN :

β1
1− β1

1

sA
=

(
κN (sSE)

κA

)ρ
s ρ−1
A .

Multiply by sA, take logs, divide by ρ, and exponentiate:

s∗A = exp
[
1
ρ logitβ1 + log

(
κA

κN (sSE)

)]
(E.43)

Because κN (sSE) in (E.41) depends on κS , κE and the within-non-academic mix sSE , the op-

timal Academic share s∗A incorporates all three technology parameters unless we impose a normal-

ization such as κS = κE .

E.3.2 Estimation and identification

Why the baseline estimation sets κS = κE.

• Without panel data or exogenous price shocks the single cross-section of levels & preference

ranks identifies β1, β2 precisely but cannot pin down ℓ2 = log(κS/κE) tightly—its effect

overlaps almost one-for-one with β2 inside sSE .

• Normalising κS = κE (ℓ2 = 0) therefore removes a weakly identified parameter and focuses

statistical power on ℓ1 = log(κA/κS), which is central for detecting supply-side heterogeneity.

• If future data supply additional variation you can restore ℓ2 by estimating it directly via

(E.41) and (E.43); only a few lines of Stan code change.
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Social vs. Emotional skills. Within the non-academic pair set sSE := cS/cE and equate MRS

to MRT:
β2

1− β2

cE
cS

=
(
κE
κS

)ρ( cS
cE

)ρ−1
.

Substituting sSE = cS/cE yields,

β2
1− β2

(
κS
κE

)ρ
= sρSE .

If we impose the normalisation κS = κE (i.e. no technological asymmetry within the non-

academic block), then ℓ2 = 0 and (??) simplifies to the expression used in the baseline Stan

specification:

s̃SE = exp
[
1
ρ logitβ2

]
.

Why one tilt (ℓ1) is enough for identification

(a) Given three observed ratings, any common rescaling of (κA, κS , κE) is absorbed by the

unobserved budget Bi; only two independent cost ratios remain.

(b) Rank data depend on those ratios only through the two mixes sA and sSE . With a single

cross-section, ℓ2 is nearly collinear with β2 inside (??). Estimating both leads to weak identification

unless additional variation (panel data, price changes, supply shifters) is available.

(c) Therefore the empirical benchmark sets ℓ2 = 0, keeps ℓ1 free, and focuses on the contrast

between benefit heterogeneity σβ1 , σβ2 and cost heterogeneity σℓ1 . Section ?? shows that allowing

ℓ2 ̸= 0 yields similar qualitative results but much wider posteriors.

A scale-free representation (gA, gS , gE) Because only (sA, sSE) matter for choices, we pick a

single convenient point on the CET frontier:

g
A
:= 1, g

E
:=

1

sA(1 + sSE)
, g

S
:= sSE g

E
(E.44)

Any feasible skill vector differs from g := (g
A
, g

S
, g

E
) only by a common positive multiplier.

We let the parent-specific budget scale Bi > 0 supply that multiplier:

cik = Bi gk.

E.3.3 Latent utilities for the ordered-probit

We show a numerically stable way to obtain the three category-specific latent utilities that feed the

ordered-probit likelihood, using only log and logit transformations that Stan handles safely.
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Raw marginal utilities. With nested Cobb–Douglas preferences

U(cA, cS , cE) = cβ1

A

(
cβ2

S c1−β2

E

)1−β1 , β1, β2 ∈ (0, 1),

the marginal utilities factor as

MUA = β1
U

cA
, MUS = (1− β1)β2

U

cS
, MUE = (1− β1)(1− β2)

U

cE
.

Normalise by the common factor (1− β1). Multiplying or dividing every MUj by the same

positive constant leaves rankings unchanged, so set

M̃U j :=
MUj

U(1− β1)
(j = A,S,E).

Then

M̃UA =
β1

1− β1

1

cA
, M̃US = β2

1

cS
, M̃UE = (1− β2)

1

cE
.

Take logs and cancel parent-specific constants. Write cj = Bi gj where Bi is parent i’s

budget and gj the effective skill output. After subtracting logBi, which is common to all three

categories, we obtain

uA = log
(

β1

1−β1

)
− log gA,

uS = log β2 − log gS ,

uE = log(1− β2)− log gE

(E.45)

E.3.4 Implementation of the model in Stan

Let

θ1 = logit beta1, θ2 = logit beta2.

• log
( β1

1−β1

)
= θ1.

• log β2 = θ2 + log1m inv logit(θ2).

• log(1− β2) = log1m inv logit(θ2).

Using these identities avoids under- or overflow when β is very close to 0 or 1, while the − log gj

terms come straight from the rating equation cj = Bi gj .

These uA, uS , uE are proportional to the (negative) ordering utilities used in the likelihood;

their differences determine the probabilities of each category being ranked first, second, or third.
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E.3.5 Mapping to observed data

Skill Levels. Parents report a cardinal score on each category, modelled as

rik ∼ N (Bi gk, σ
2
rating) (E.46)

so ratings identify both Bi and the supply tilts ℓ1, ℓ2.

Skill Preferences (ordered probit). Assume i.i.d. N (0, 1) noise on three latent utilities and

a pair of cut-points c1 < c2. Observed ranks rankik ∈ {1, 2, 3} (1 = most important) for person i

and category k follow the ordered probit:

Pr(rankik = 1) = 1− Φ(c2 − uik),

Pr(rankik = 2) = Φ(c2 − uik)− Φ(c1 − uik),

Pr(rankik = 3) = Φ(c1 − uik)

(E.47)

with uik equal to the corresponding expression in (E.45). To ensure identifiability, we parame-

terize the cutpoints as c1 and c2 = c1 +∆ with ∆ > 0, preventing label-switching during MCMC

sampling.

I chose to model skill preference ranks using an independent three-level ordered probit given

that ties were allowed, in practice. If skill preference rankings were strictly ordered, a rank-ordered

likelihood (Plackett-Luce, rank-probit, etc.) could be used instead.

E.3.6 Incorporating demographics

The model allows each individual-level parameter to vary with observed covariates Xi. For parent

i, the logit preferences, supply tilts, and log budget are:

logit(β1i) = γβ1,0 +X⊤
β1,iγβ1 + σβ1zβ1,i, (E.48)

logit(β2i) = γβ2,0 +X⊤
β2,iγβ2 + σβ2zβ2,i, (E.49)

ℓ1i = γℓ1,0 +X⊤
ℓ1,iγℓ1 + σℓ1zℓ1,i, (E.50)

logBi = γB,0 +X⊤
B,iγB + σBzB,i. (E.51)

where zβ1,i, zβ2,i, zℓ1,i, zB,i ∼ N (0, 1) are independent standard normal draws. The γ0 terms are

intercepts, γ are covariate effect vectors, and σ parameters govern unexplained (residual) hetero-

geneity conditional on covariates.

Covariate selection. In the main specification, we include:

• Preferences (Xβ1,Xβ2): grade, household income, mother’s education, father’s education.

These capture how observable family characteristics shift the relative value placed on academic

versus social-emotional skills.
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• Supply (Xℓ1): All preference covariates plus teacher skill rankings for academic, social, and emo-

tional categories. Teacher rankings serve as an exclusion restriction—they enter the production

technology but not preferences, providing exogenous variation in costs to aid identification.

• Budget (XB): household income and number of siblings, proxying for total resources available

for skill investment.

The model is flexible: setting any K = 0 reduces to the baseline specification without covariates

for that equation. All covariate matrices are constructed using dummy encoding for categorical vari-

ables, with reference categories omitted (e.g., Grade 1, lowest income bracket, less than secondary

education).

E.3.7 Priors and normalization

Priors on intercepts and covariate effects. We use weakly informative priors centered at

zero:

γβ1,0, γβ2,0, γℓ1,0 ∼ N (0, 0.52),

γB,0 ∼ N (log 75, 0.32),

γβ1,γβ2,γℓ1 ∼ N (0, 0.52I),

γB ∼ N (0, 0.32I).

The budget intercept prior centers on log 75, reflecting that parent ratings average around 75 on

the 0–100 scale. Covariate effect priors are symmetric around zero, allowing demographics to shift

parameters in either direction.

Priors on heterogeneity parameters. Standard deviations governing unexplained variation

receive exponential priors:

σβ1, σβ2, σℓ1 ∼ Exponential(2), σB ∼ Exponential(3), σrating ∼ N (10, 52) truncated at 0.

These priors are weakly informative, allowing substantial heterogeneity while penalizing extreme

values. The rating noise prior centers on 10 points (on a 0–100 scale), consistent with measurement

error in subjective assessments.

Cutpoint priors. The ordered probit cutpoints use:

c1 ∼ N (0, 22), ∆ := c2 − c1 ∼ Exponential(1).

This parameterization ensures c1 < c2 while allowing the data to determine threshold locations.

The exponential prior on ∆ weakly favors moderate separation between rank categories.
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Normalizations and identification. Several normalizations ensure model identification:

1. Curvature: We fix ρ = 1.5, corresponding to an elasticity of transformation 1/(ρ−1) = 2. This

is within the range typical for CET production functions and could not be separately identified

from the heterogeneity parameters without strong functional form assumptions or additional

moments.

2. Supply intercept: We set ℓ2 = 0 (social and emotional skills have equal baseline production

costs, κS = κE), normalizing the supply tilt to Academic versus non-Academic only. This

identification restriction is without loss of generality given our three-category setup.

3. Production scale: We normalize gA = 1 when computing skill mixes, pinning down one point

on the production frontier. Combined with the budget Bi, this determines the absolute scale of

skill production.

These normalizations reduce the parameter space without loss of economic content, as the model

primitives of interest—variance in benefits versus costs—remain identified through the joint pattern

of ratings and rankings across categories.

E.3.8 The hierarchical parameters estimated in Stan

Block Symbol in code Economic meaning

Preference intercepts γβ1,0, γβ2,0 Baseline academic vs non-academic, social vs emotional tilts

Preference effects γβ1,γβ2 How demographics shift preference parameters

Supply intercept γℓ1,0 Baseline log-ratio log(κA/κSE)

Supply effects γℓ1 How demographics and teachers shift production costs

Budget intercept γB,0 Baseline effective resources

Budget effects γB How income/siblings shift resources

Residual std. devs. σβ1, σβ2, σℓ1, σB Unexplained heterogeneity (conditional on covariates)

Curvature ρ = 1.5 Elasticity of transformation (fixed)

Rating noise σrating Perception / measurement error

Rank cut-points c1,∆ = c2 − c1 Thresholds in ordered probit

The key inferential targets are the total variances in preferences and costs:

Var[logit(β1i)] = Var(X⊤
β1,iγβ1) + σ2

β1, Var[ℓ1i] = Var(X⊤
ℓ1,iγℓ1) + σ2

ℓ1.

Comparing these variances (or equivalently, the variances of log Ti and log λi after rescaling by

1/ρ) reveals whether observed specialization is primarily driven by benefit or cost heterogeneity.

The sign of the empirical preference-level slope corresponds structurally to whether cost or benefit

variance dominates in this decomposition.
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E.3.9 Estimation details

The model is estimated using Stan’s Hamiltonian Monte Carlo with the No-U-Turn Sampler

(NUTS). We run 4 chains with 2,000 warmup iterations and 3,000 post-warmup draws per chain,

yielding 12,000 total posterior samples. We set adapt delta = 0.95 and max treedepth = 12 to

improve sampling efficiency in the presence of complex posterior geometry induced by the ratings-

rankings likelihood and demographic covariates. Convergence is assessed via R̂ < 1.01 and effective

sample sizes (ESS) > 400 for all parameters of interest. The full Stan code is reproduced below.

// ------------ 3-category CET model -------

data {

int <lower=1> N;

array[N, 3] real <lower=0, upper =100> rating;

array[N, 3] int <lower=1, upper=3> rank;

// Covariate dimensions (set to 0 for no covariates)

int <lower=0> K_beta1; // Number of covariates for beta1

int <lower=0> K_beta2; // Number of covariates for beta2

int <lower=0> K_lkA; // Number of covariates for log(kappa_A)

int <lower=0> K_lkS; // Number of covariates for log(kappa_S)

int <lower=0> K_B; // Number of covariates for budget

// Covariate matrices (can be empty if K=0)

matrix[N, K_beta1] X_beta1;

matrix[N, K_beta2] X_beta2;

matrix[N, K_lkA] X_lkA;

matrix[N, K_lkS] X_lkS;

matrix[N, K_B] X_B;

// Control flag for identification

int <lower=0, upper=1> estimate_lkappa_SE; // 0 = assume kappa_S = kappa_E , 1 =

estimate separately

}

parameters {

// Preference parameters (demand)

real gamma_beta1_0;

vector[K_beta1] gamma_beta1;

real <lower=0> sigma_logit_beta1;

vector[N] z_beta1;

real gamma_beta2_0;

vector[K_beta2] gamma_beta2;

real <lower=0> sigma_logit_beta2;

vector[N] z_beta2;

// Supply parameters - log(kappa) for each category
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// Academic - always estimated

real gamma_lkA_0;

vector[K_lkA] gamma_lkA;

real <lower=0> sigma_lkA;

vector[N] z_lkA;

// Social - parameters exist but only used if estimate_lkappa_SE = 1

real gamma_lkS_0;

vector[K_lkS] gamma_lkS;

real <lower=0> sigma_lkS;

vector[N] z_lkS;

// Emotional: NOT ESTIMATED - normalized to 1 (log = 0)

// No parameters needed

// Budget parameters

real gamma_B_0;

vector[K_B] gamma_B;

real <lower=0> sigma_logB;

vector[N] z_logB;

// Rating noise

real <lower=0> sigma_rating;

// Ordered -probit cut -points

real cut1;

real <lower=0> cut_diff;

}

transformed parameters {

real rho = 1.5;

real inv_rho = 1.0 / rho;

// Individual -level preference parameters

vector[N] logit_beta1;

vector[N] logit_beta2;

// Individual -level log(kappa) parameters

vector[N] lkappa_A;

vector[N] lkappa_S;

vector[N] lkappa_E; // This will be set to 0 for normalization

// Budget

vector[N] logB;

vector[N] B;

// === Compute preference parameters ===

if (K_beta1 > 0) {
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logit_beta1 = gamma_beta1_0 + X_beta1 * gamma_beta1 + sigma_logit_beta1 *

z_beta1;

} else {

logit_beta1 = gamma_beta1_0 + sigma_logit_beta1 * z_beta1;

}

if (K_beta2 > 0) {

logit_beta2 = gamma_beta2_0 + X_beta2 * gamma_beta2 + sigma_logit_beta2 *

z_beta2;

} else {

logit_beta2 = gamma_beta2_0 + sigma_logit_beta2 * z_beta2;

}

// === Compute supply parameters (log kappa ratios) ===

if (K_lkA > 0) {

lkappa_A = gamma_lkA_0 + X_lkA * gamma_lkA + sigma_lkA * z_lkA;

} else {

lkappa_A = gamma_lkA_0 + sigma_lkA * z_lkA;

}

// NORMALIZATION: Always set kappa_E = 1 (lkappa_E = 0)

lkappa_E = rep_vector (0.0, N);

// For baseline: set kappa_S = kappa_E = 1

if (estimate_lkappa_SE == 1) {

// Estimate kappa_S separately (but kappa_E is still normalized to 1)

if (K_lkS > 0) {

lkappa_S = gamma_lkS_0 + X_lkS * gamma_lkS + sigma_lkS * z_lkS;

} else {

lkappa_S = gamma_lkS_0 + sigma_lkS * z_lkS;

}

} else {

// Baseline: kappa_S = kappa_E = 1

lkappa_S = rep_vector (0.0, N);

}

// === Compute budget ===

if (K_B > 0) {

logB = gamma_B_0 + X_B * gamma_B + sigma_logB * z_logB;

} else {

logB = gamma_B_0 + sigma_logB * z_logB;

}

B = exp(logB);

// === Compute skill mixes (hybrid: vectorize what’s easy , loop the rest) ===

// Step 1: Compute log(s_SE) - VECTORIZED

vector[N] log_s_SE = inv_rho * logit_beta2;

90



// Steps 2-4: Compute log(kappa_N), log(s_A), and log(g_*) in single loop

vector[N] log_kappa_N;

vector[N] log_s_A;

vector[N] log_g_A = rep_vector (0.0, N);

vector[N] log_g_S;

vector[N] log_g_E;

for (i in 1:N) {

// Step 2: Compute log(kappa_N)

real term1 = rho * (log_s_SE[i] - lkappa_S[i]);

real term2 = -rho * lkappa_E[i];

log_kappa_N[i] = log1p_exp(log_s_SE[i]) - inv_rho * log_sum_exp(term1 , term2);

// Step 3: Compute log(s_A)

log_s_A[i] = inv_rho * logit_beta1[i] + lkappa_A[i] - log_kappa_N[i];

// Step 4: Compute log(g_E) and log(g_S)

log_g_E[i] = -log_s_A[i] - log1p_exp(log_s_SE[i]);

log_g_S[i] = log_s_SE[i] + log_g_E[i];

}

// Step 5: Exponentiate - VECTORIZED

vector[N] g_A = exp(log_g_A);

vector[N] g_S = exp(log_g_S);

vector[N] g_E = exp(log_g_E);

// Cutpoints

vector [2] cut;

cut [1] = cut1;

cut [2] = cut1 + cut_diff;

}

model {

// === PRIORS ===

// Priors on preference intercepts

gamma_beta1_0 ~ normal(0, 0.5);

gamma_beta2_0 ~ normal(0, 0.5);

// Priors on supply intercepts

// gamma_lkA_0: log(kappa_A / kappa_E) - always estimated

gamma_lkA_0 ~ normal(0, 0.5);

// gamma_lkS_0: log(kappa_S / kappa_E) - only used if estimate_lkappa_SE = 1

// But we need to give it a prior regardless since it’s a parameter

if (estimate_lkappa_SE == 1) {

gamma_lkS_0 ~ normal(0, 0.5);

} else {

// Weak prior when not used
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gamma_lkS_0 ~ normal(0, 10);

}

// Prior on budget intercept - this absorbs the scale

gamma_B_0 ~ normal(log (75), 0.5);

// Priors on covariate effects

if (K_beta1 > 0) gamma_beta1 ~ normal(0, 0.5);

if (K_beta2 > 0) gamma_beta2 ~ normal(0, 0.5);

if (K_lkA > 0) gamma_lkA ~ normal(0, 0.5);

if (estimate_lkappa_SE == 1) {

if (K_lkS > 0) gamma_lkS ~ normal(0, 0.5);

} else {

if (K_lkS > 0) gamma_lkS ~ normal(0, 10);

}

if (K_B > 0) gamma_B ~ normal(0, 0.3);

// Priors on heterogeneity

sigma_logit_beta1 ~ exponential (2);

sigma_logit_beta2 ~ exponential (2);

sigma_lkA ~ exponential (2);

if (estimate_lkappa_SE == 1) {

sigma_lkS ~ exponential (2);

} else {

sigma_lkS ~ exponential (0.1); // Tight prior when not used

}

sigma_logB ~ exponential (3);

sigma_rating ~ normal (10, 5);

cut1 ~ normal(0, 2);

cut_diff ~ exponential (1);

// Standard normal priors on z’s

z_beta1 ~ std_normal ();

z_beta2 ~ std_normal ();

z_lkA ~ std_normal ();

// z_lkS gets prior even in baseline (but won’t affect results since lkappa_S =

0)

if (estimate_lkappa_SE == 1) {

z_lkS ~ std_normal ();

} else {

z_lkS ~ normal(0, 0.01); // Very tight when not used

}

z_logB ~ std_normal ();

// === LIKELIHOOD ===

for (i in 1:N) {
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// Ratings: r_ik ~ N(B_i * g_k , sigma_rating ^2)

rating[i,1] ~ normal(B[i] * g_A[i], sigma_rating);

rating[i,2] ~ normal(B[i] * g_S[i], sigma_rating);

rating[i,3] ~ normal(B[i] * g_E[i], sigma_rating);

// Rankings: ordered probit on latent utilities

vector [3] util;

util [1] = logit_beta1[i] - log_g_A[i];

util [2] = logit_beta2[i] + log1m_inv_logit(logit_beta2[i]) - log_g_S[i];

util [3] = log1m_inv_logit(logit_beta2[i]) - log_g_E[i];

for (k in 1:3) {

real eta = util[k];

vector [3] prob;

prob [1] = 1 - Phi(cut [2] - eta);

prob [2] = Phi(cut [2] - eta) - Phi(cut [1] - eta);

prob [3] = Phi(cut [1] - eta);

rank[i,k] ~ categorical(prob);

}

}

}

generated quantities {

// Compute implied population means

real mu_logit_beta1_implied;

real mu_logit_beta2_implied;

real mu_lkA_implied;

real mu_lkS_implied;

real mu_logB_implied;

if (K_beta1 > 0) {

mu_logit_beta1_implied = gamma_beta1_0 + mean(X_beta1 * gamma_beta1);

} else {

mu_logit_beta1_implied = gamma_beta1_0;

}

if (K_beta2 > 0) {

mu_logit_beta2_implied = gamma_beta2_0 + mean(X_beta2 * gamma_beta2);

} else {

mu_logit_beta2_implied = gamma_beta2_0;

}

if (K_lkA > 0) {

mu_lkA_implied = gamma_lkA_0 + mean(X_lkA * gamma_lkA);

} else {

mu_lkA_implied = gamma_lkA_0;

}

if (estimate_lkappa_SE == 1) {
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if (K_lkS > 0) {

mu_lkS_implied = gamma_lkS_0 + mean(X_lkS * gamma_lkS);

} else {

mu_lkS_implied = gamma_lkS_0;

}

} else {

mu_lkS_implied = 0.0; // In baseline , kappa_S = kappa_E = 1

}

if (K_B > 0) {

mu_logB_implied = gamma_B_0 + mean(X_B * gamma_B);

} else {

mu_logB_implied = gamma_B_0;

}

}
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